Skip to main content
Log in

Entangled nanofibrous copper: an efficient and high performance nanostructured catalyst in azide-alkyne cycloaddition reaction and reduction of nitroarenes and aromatic aldehydes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this research, nanofibrous copper (0) was utilized as an efficient nanostructured catalyst in Azide-Alkyne Cycloaddition reaction, reduction of nitrobenzenes to anilines and reduction of aromatic aldehydes to benzyl alcohols. Nanofibrous copper was prepared via dealloying of Cu–Zn powder and was characterized by SEM, TEM, XRD, BET and EDS analyses. This catalyst produced very good results including high product yield, short reaction time and recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Slater AG, Cooper AI (2015) Porous materials Function-led design of new porous materials. Science 348:e8075

    Article  CAS  Google Scholar 

  2. Gottardi G, Galli E 2012 Natural zeolites (Vol. 18). Springer Science, Business Media.

  3. Liu Y, O’Keeffe M, Treacy MM, Yaghi OM (2018) The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry. Chem Soc Rev 47:4642

    Article  CAS  PubMed  Google Scholar 

  4. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548

    Article  CAS  PubMed  Google Scholar 

  5. Zhao XS, Lu GQ, Millar GJ (1996) Advances in mesoporous molecular sieve MCM-41. Ind Eng Chem Res 35:2075

    Article  CAS  Google Scholar 

  6. Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166

    Article  CAS  PubMed  Google Scholar 

  7. Abbas A, Abbas S, Wang X (2016) Nanoporous copper: fabrication techniques and advanced electrochemical applications. Corros Rev 34:249

    Article  CAS  Google Scholar 

  8. Zhang J, Li CM (2012) Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem Soc Rev 41:7016

    Article  CAS  PubMed  Google Scholar 

  9. Chen LY, Yu JS, Fujita T, Chen MW (2009) Nanoporous copper with tunable nanoporosity for SERS applications. Adv Func Mater 19:1221

    Article  CAS  Google Scholar 

  10. Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410:450

    Article  CAS  PubMed  Google Scholar 

  11. Solanki V, Krupanidhi SB, Nanda KK (2017) Sequential elemental dealloying approach for the fabrication of porous metal oxides and chemiresistive sensors thereof for electronic listening. ACS Appl Mater Interfaces 9:41428

    Article  CAS  PubMed  Google Scholar 

  12. Hayes JR, Hodge AM, Biener J, Hamza AV, Sieradzki K (2006) Monolithic nanoporous copper by dealloying Mn–Cu. J Mater Res 21:2611

    Article  CAS  Google Scholar 

  13. Lu HB, Li Y, Wang FH (2007) Synthesis of porous copper from nanocrystalline two-phase Cu–Zr film by dealloying. Scripta Mater 56:165

    Article  CAS  Google Scholar 

  14. Zhao C, Qi Z, Wang X, Zhang Z (2009) Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg–Cu alloys. Corros Sci 51:2120

    Article  CAS  Google Scholar 

  15. Liu WB, Zhang SC, Li N, Zheng JW, Xing YL (2011) A facile one-pot route to fabricate nanoporous copper with controlled hierarchical pore size distributions through chemical dealloying of Al–Cu alloy in an alkaline solution. Microporous Mesoporous Mater 138:1

    Article  CAS  Google Scholar 

  16. Dan Z, Qin F, Sugawara Y, Muto I, Hara N (2012) Fabrication of nanoporous copper by dealloying amorphous binary Ti–Cu alloys in hydrofluoric acid solutions. Intermetallics 29:14

    Article  CAS  Google Scholar 

  17. Aburada T, Fitz-Gerald JM, Scully JR (2011) Synthesis of nanoporous copper by dealloying of Al-Cu-Mg amorphous alloys in acidic solution: The effect of nickel. Corros Sci 53:1627

    Article  CAS  Google Scholar 

  18. Dan Z, Qin F, Makino A, Sugawara Y, Muto I, Hara N (2014) Fabrication of nanoporous copper by dealloying of amorphous Ti–Cu–Ag alloys. J Alloy Compd 586:S134

    Article  CAS  Google Scholar 

  19. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057

    Article  PubMed  CAS  Google Scholar 

  20. Appukkuttan P, Dehaen W, Fokin VV, Van der Eycken E (2004) A microwave-assisted click chemistry synthesis of 1, 4-disubstituted 1, 2, 3-triazoles via a copper (I)-catalyzed three-component reaction. Org Lett 6:4223

    Article  CAS  PubMed  Google Scholar 

  21. Feldman AK, Colasson B, Fokin VV (2004) One-pot synthesis of 1, 4-disubstituted 1, 2, 3-triazoles from in situ generated azides. Org Lett 6:3897

    Article  CAS  PubMed  Google Scholar 

  22. Spiteri C, Moses JE (2010) Copper-catalyzed azide–alkyne cycloaddition: regioselective synthesis of 1, 4, 5-trisubstituted 1, 2, 3-triazoles. Angew Chem Int Ed 49:31

    Article  CAS  Google Scholar 

  23. Alonso F, Moglie Y, Radivoy G, Yus M (2011) Multicomponent click synthesis of 1, 2, 3-triazoles from epoxides in water catalyzed by copper nanoparticles on activated carbon. J Org Chem 76:8394

    Article  CAS  PubMed  Google Scholar 

  24. Tafesh AM, Weiguny J (1996) A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem Rev 96:2035

    Article  CAS  PubMed  Google Scholar 

  25. Herves P, Pérez-Lorenzo M, Liz-Marzán LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577

    Article  CAS  PubMed  Google Scholar 

  26. Burge HD, Collins DJ, Davis BH (1980) Intermediates in the Raney nickel catalyzed hydrogenation of nitrobenzene to aniline. Ind Eng Chem Prod Res Dev 19:389

    Article  CAS  Google Scholar 

  27. Spencer J, Anjum N, Patel H, Rathnam RP, Verma J (2007) Molybdenum hexacarbonyl and DBU reduction of nitro compounds under microwave irradiation. Synlett 2007:2557

    Article  CAS  Google Scholar 

  28. Skupiń J, Zukowska A, Chajewski A (2001) Reduction of nitrobenzene to aniline with carbon monoxide and water in the presence of the PdCl2/Fe/I2 system. React Kinet Catal Lett 72:21

    Article  Google Scholar 

  29. Makarova OV, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D (2000) Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ Sci Technol 34:4797

    Article  CAS  Google Scholar 

  30. Subramanian T, Pitchumani K (2012) Selective reduction of nitroarenes by using zeolite-supported copper nanoparticles with 2-propanol as a sustainable reducing agent. ChemCatChem 4:1917

    Article  CAS  Google Scholar 

  31. Roy P, Periasamy AP, Liang CT, Chang HT (2013) Synthesis of graphene-ZnO-Au nanocomposites for efficient photocatalytic reduction of nitrobenzene. Environ Sci Technol 47:6688

    Article  CAS  PubMed  Google Scholar 

  32. Nasab MJ, Kiasat AR (2016) Multifunctional Fe 3 O 4@ n SiO 2@ m SiO 2/Pr-Imi-NH 2· Ag core–shell microspheres as highly efficient catalysts in the aqueous reduction of nitroarenes: improved catalytic activity and facile catalyst recovery. RSC Adv 6:41871

    Article  CAS  Google Scholar 

  33. Gholinejad M, Zareh F, Nájera C (2018) Nitro group reduction and Suzuki reaction catalysed by palladium supported on magnetic nanoparticles modified with carbon quantum dots generated from glycerol and urea. Appl Organomet Chem 32:e3984

    Article  CAS  Google Scholar 

  34. Mullangi D, Chakraborty D, Pradeep A, Koshti V, Vinod CP, Panja S, Vaidhyanathan R (2018) Heterogenous Catalysts: highly stable cof-supported Co/Co (OH) 2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small 14:1870169

    Article  CAS  Google Scholar 

  35. Cantillo D, Moghaddam MM, Kappe CO (2013) Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals. J Org Chem 78:4530

    Article  CAS  PubMed  Google Scholar 

  36. Ghonchepour E, Islami MR, Bananezhad B, Mostafavi H, Tikdari AM (2019) Synthesis of recoverable palladium composite as an efficient catalyst for the reduction of nitroarene compounds and Suzuki cross-coupling reactions using sepiolite clay and magnetic nanoparticles (Fe3O4@ sepiolite-Pd2+). C R Chim 22:84

    Article  CAS  Google Scholar 

  37. Zhu H, Ke X, Yang X, Sarina S, Liu H (2010) Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew Chem Int Ed 49:9657

    Article  CAS  Google Scholar 

  38. Chakraborty S, Bhattacharya P, Dai H, Guan H (2015) Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds. Acc Chem Res 48:1995

    Article  CAS  PubMed  Google Scholar 

  39. Kidwai M, Bansal V, Saxena A, Shankar R, Mozumdar S (2006) Ni-nanoparticles: an efficient green catalyst for chemoselective reduction of aldehydes. Tetrahedron Lett 47:4161

    Article  CAS  Google Scholar 

  40. Subramanian T, Pitchumani K (2012) Transfer hydrogenation of carbonyl compounds and carbon–carbon multiple bonds by zeolite supported Cu nanoparticles. Catal Sci Technol 2:296

    Article  CAS  Google Scholar 

  41. Rayhan U, Do JH, Arimura T, Yamato T (2015) Reduction of carbonyl compounds by Raney Ni–Al alloy and Al powder in the presence of noble metal catalysts in water. C R Chim 18:685

    Article  CAS  Google Scholar 

  42. Naimi-Jamal MR, Mokhtari J, Dekamin MG, Kaupp G (2009) Sodium tetraalkoxyborates: intermediates for the quantitative reduction of aldehydes and ketones to alcohols through ball milling with NaBH4. Eur J Org Chem 2009:3567

    Article  CAS  Google Scholar 

  43. Sayyahi S, Saghanezhad SJ (2019) Copper-Based Bulk and Nano-Catalysts for the One-Pot Propargylamine Synthesis. Mini-Rev Org Chem 16:361

    Article  CAS  Google Scholar 

  44. Tappan BC, Steiner SA III, Luther EP (2010) Nanoporous metal foams. Angew Chem Int Ed 49:4544

    Article  CAS  Google Scholar 

  45. Gao W, Hood ZD, Chi M (2017) Interfaces in heterogeneous catalysts: advancing mechanistic understanding through atomic-scale measurements. Acc Chem Res 50:787

    Article  CAS  PubMed  Google Scholar 

  46. Salamatmanesh A, Miraki MK, Yazdani E, Heydari A (2018) Copper (I)–caffeine complex immobilized on silica-coated magnetite nanoparticles: a recyclable and eco-friendly catalyst for click chemistry from organic halides and epoxides. Catal Lett 148:3257

    Article  CAS  Google Scholar 

  47. Scott SL (2018) A Matter of life (time) and death. ACS Catal 8:e8597

    Article  CAS  Google Scholar 

  48. Dell’Anna MM, Intini S, Romanazzi G, Rizzuti A, Leonelli C, Piccinni F, Mastrorilli P (2014) Polymer supported palladium nanocrystals as efficient and recyclable catalyst for the reduction of nitroarenes to anilines under mild conditions in water. J Mol Catal A: Chem 395:307

    Article  CAS  Google Scholar 

  49. Davarpanah J, Kiasat AR (2013) Catalytic application of silver nanoparticles immobilized to rice husk-SiO2-aminopropylsilane composite as recyclable catalyst in the aqueous reduction of nitroarenes. Catal Commun 41:6

    Article  CAS  Google Scholar 

  50. Keshipour S, Adak K (2018) Reduction of Nitroaromatics to Amines with Cellulose Supported Bimetallic Pd/Co Nanoparticles. Iran J Chem Chem Eng 37:23

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Mahshahr Branch, Islamic Azad University, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Sayyahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saghanezhad, S.J., Buhamidi, M.M., Ebadi, S. et al. Entangled nanofibrous copper: an efficient and high performance nanostructured catalyst in azide-alkyne cycloaddition reaction and reduction of nitroarenes and aromatic aldehydes. Reac Kinet Mech Cat 133, 897–911 (2021). https://doi.org/10.1007/s11144-021-02011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02011-x

Keywords

Navigation