Skip to main content
Log in

Adsorption of p-nitrophenol onto activated carbon prepared from fir sawdust: isotherm studies and error analysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Fir sawdust was employed for the preparation of activated carbons by potassium hydroxide (KOH), phosphoric acid (H3PO4) and zinc chloride (ZnCl2) activations. The three adsorbents have been abbreviated BAC, AAC and SAC. The nitrogen adsorption–desorption experiments were performed at 77 K to determine the physical surface properties of these three adsorbents. The chemical properties were depicted by the point of zero charge (pHPZC) measurement and by Fourier Transform Infrared (FTIR) spectra. Characterization of the fir sawdust activated carbons suggests that their structures are highly dependent on the activation agent molecules. In this research, in order to evaluate the performances of the fir sawdust activated carbons, a series of batch experiments were conducted for the adsorption of p-nitrophenol from aqueous solution at initial concentrations in range of 50–250 mg/L. The equilibrium data were fitted by non linear regression with two-parameter models: Langmuir, Freundlich and Jovanovic and three-parameter models: Redlich–Peterson, Vieth–Sladek, Koble–Corrigan and Brouers–Sotolongo. Five error functions were used to compare the accuracy of the fit. The equilibrium data of p-nitrophenol onto BAC were better described by Langmuir isotherm and by Freundlich isotherm for AAC and SAC. The maximum adsorption capacity of p-nitrophenol was found for SAC (qm = 318.67 mg/g) and this can be attributed to the basic nitrogen-containing groups and graphitic structure. The results proved that zinc chloride-activated carbon was a successful adsorbent for p-nitrophenol removal from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tang D, Zheng Z, Lin K, Luan J, Zhang J (2007) J Hazard Mater 143:49–56

    Article  CAS  Google Scholar 

  2. Petrova B, Tsyntsarski B, Budinova T, Petrov N, Velasco LF, Ania CO (2011) Chem Eng J 172:102–108

    Article  CAS  Google Scholar 

  3. Ofomaja AE, Unuabonah EI (2013) J Taiwan Inst Chem Eng 44:566–576

    Article  CAS  Google Scholar 

  4. Cotoruelo LM, Marqués MD, Díaz FJ, Rodríguez-Mirasol J, Rodríguez JJ, Cordero T (2012) Chem Eng J 184:176–183

    Article  CAS  Google Scholar 

  5. Boehncke A, Koennecker G, Mangelsdorf I, Wibbertmann A, World Health Organization (2000) Mononitrophenols. Concise international chemical assessment document. Wissenschaftliche Verlagsgesellschaft, Stuttgart, p 22

    Google Scholar 

  6. Xiantao S, Lihua Z, Guoxia L, Hongwei Y, Heqing T (2008) Environ Sci Technol 42(5):1687–1692

    Article  Google Scholar 

  7. Zabneva OV, Smolin SK, Shvidenko OG, Klymenko NA (2014) J Water Chem Technol 36(2):97–101

    Article  Google Scholar 

  8. Kumar A, Kumar S, Kumar S, Gupta DV (2007) J Hazard Mater 147:155–166

    Article  CAS  Google Scholar 

  9. Ioannidou O, Zabaniotou A (2007) Renew Sustain Energy Rev 11:1966–2005

    Article  CAS  Google Scholar 

  10. Miao Q, Tang Y, Xu J, Liu X, Xiao L, Chen Q (2013) J Taiwan Inst Chem Eng 44:458–465

    Article  CAS  Google Scholar 

  11. Dias JM, Alvim-Ferraz MCM, Almeida MF, Rivera-Utrilla J, Sanchez-Polo M (2007) J Environ Manag 85:833–846

    Article  CAS  Google Scholar 

  12. Rodrigues LA, da Pinto Silva MLC, Alvarez-Mendesc MO, dos Reis Coutinho A, Thima GP (2011) Chem Eng J 174:49–57

    Article  CAS  Google Scholar 

  13. Langmuir I (1916) J Am Chem Soc 38(11):2221–2295

    Article  CAS  Google Scholar 

  14. Freundlich HMF (1906) Z Phys Chem 57:385–471

    CAS  Google Scholar 

  15. Jovanovic DS (1969) Colloid Polym Sci 235:1203–1214

    CAS  Google Scholar 

  16. Redlich O, Peterson DL (1959) J Phys Chem 63:1024–1026

    Article  CAS  Google Scholar 

  17. Vieth WR, Sladek KJ (1965) J Colloid Sci 20:1014–1033

    Article  CAS  Google Scholar 

  18. Koble RA, Corrigan TE (1952) Ind Eng Chem 44:383–387

    Article  CAS  Google Scholar 

  19. Brouers F, Sotolongo O, Marquez F, Pirard JP (2005) Phys A 349:271–282

    Article  CAS  Google Scholar 

  20. Rangabhashiyam S, Anu N, Giri Nandagopal MS, Selvaraju N (2014) J Environ Chem Eng 2:398–414

    Article  CAS  Google Scholar 

  21. Hadi M, Samarghandi MR, McKay G (2010) Chem Eng J 160:408–416

    Article  CAS  Google Scholar 

  22. Sivarajasekar N, Baskar R (2014) Desalin Water Treat 52:7743–7765

    Article  CAS  Google Scholar 

  23. Foo KY, Hameed BH (2010) Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  24. Senthil Kumar P, Ramalingam S, Senthamarai C, Niranjana M, Vijayalakshmi P, Sivanesan S (2010) Desalination 261:52–60

    Article  CAS  Google Scholar 

  25. McKay G, Mesdaghinia A, Nasseri S, Hadi M, Aminabad MS (2014) Chem Eng J 251:236–247

    Article  CAS  Google Scholar 

  26. Ratkowski DA (1990) Handbook of nonlinear regression models. Marcel Dekker, New York

    Google Scholar 

  27. Ledvij M (2003) Curve fitting made easy. Ind Phys 9:24–27

    Google Scholar 

  28. Ayoob S, Gupta AK (2008) J Hazard Mater 152:976–985

    Article  CAS  Google Scholar 

  29. El-Khaiary MI, Malash G (2011) Hydrometallurgy 105:314–320

    Article  CAS  Google Scholar 

  30. Doltabadi M, Alidadi H, Davoudi M (2016) Environ Prog Sustain Energy 35(4):1078–1090

    Article  CAS  Google Scholar 

  31. Ehrburger P, Addoun A, Addoun F, Donnet JB (1986) Fuel 65:1447–1449

    Article  CAS  Google Scholar 

  32. Teran D, Nevskaia DM, Fierro JLG, Lopez-Peinado AJ, Jerez A (2003) Microporous Mesoporous Mater 60:173–181

    Article  Google Scholar 

  33. Rufford T, Zhu J, Hulicova-Jarcakova D (2014) Green carbon materials. Jenny Stanford Publishing, New York

    Book  Google Scholar 

  34. Feng J, Carpanese C, Fina A (2016) Polym Degrad Stab 129:319–327

    Article  CAS  Google Scholar 

  35. Larkin P (2011) Infrared and Raman Spectroscopy, 1st ed. Elsevier, Amsterdam

  36. Liu QS, Wang P, Jiang JP, Li N (2010) Chem Eng J 157:348–356

    Article  CAS  Google Scholar 

  37. Ayar A, Gürsal S, Gürten AA, Gezici O (2008) Desalination 219(1–3):160–170

    Article  CAS  Google Scholar 

  38. Neagu M, Popovici DR, Dusescu CM, Calin C (2017) Rev Chim 68(1):139–142

    Article  CAS  Google Scholar 

  39. Neagu M, Popovici DR, Vijan LE, Calin C (2017) Rev Chim 68(3):496–499

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena-Emilia Oprescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popovici, D.R., Neagu, M., Dusescu-Vasile, C.M. et al. Adsorption of p-nitrophenol onto activated carbon prepared from fir sawdust: isotherm studies and error analysis. Reac Kinet Mech Cat 133, 483–500 (2021). https://doi.org/10.1007/s11144-021-01997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01997-8

Keywords

Navigation