Skip to main content
Log in

Factors affecting the catalytic activity of Pd-based electrocatalysts in the electrooxidation of glycerol: element doping and functional groups on the support

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this paper, the loaded Pd-based (Pd–Ni, Pd-Co, Pd–Ag, Pd-Pb and Pd-Pr) electrocatalyst was prepared by the method of impregnation-freeze-drying-H2/Ar2 reduction. The crystal structure, spatial distribution and surface chemical state of Pd-based electrocatalysts were characterized by X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy. The effects of doping elements and functional groups of the support on the electrocatalytic activity of Pd-based electrocatalysts were studied using cyclic voltammetry and chronoamperometry. The results show that when the atomic ratio of Pd to Pr is 1.25, the PdPr/rGO nanocatalyst has the best catalytic activity for the electrooxidation of glycerol, which is 2.76 times that of pure Pd. In comparison to MWCNTs with -COOH, -NH2 and -OH functional groups, nitrogen-doped MWCNTs are more beneficial to increase the reaction rate of glycerol electrooxidation. The reason may be that Pr can produce praseodymium hydroxide in alkaline solution. In the electrooxidation reaction of glycerol, praseodymium hydroxide can act as an electrocatalyst. In addition, the doping of Pr increases the content of Pd0, and there is a synergistic effect between Pd and Pr. These are beneficial for increasing the electrooxidation rate of glycerol on the Pd6Pr4/N-MWCNT catalyst. The functional groups on the support may be affect the adsorption capacity and the degree of reduction for metal ions, and then affect the electrocatalytic activity. The influence of doping in the electrocatalyst is greater than that of the functional groups on the support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siwal SS, Thakur S, Zhang QB, Thakur VK (2019) Mater Today Chem 14:100182. https://doi.org/10.1016/j.mtchem.2019.06.004

    Article  CAS  Google Scholar 

  2. Yang Z, Shi Y, Wang X, Zhang G, Cui P (2019) J Power Sources 431:125. https://doi.org/10.1016/j.jpowsour.2019.05.052

    Article  CAS  Google Scholar 

  3. Higa M, Mehdizadeh S, Feng S, Endo N, Kakihana Y (2020) J Membr Sci 597:117618. https://doi.org/10.1016/j.memsci.2019.117618

    Article  CAS  Google Scholar 

  4. Lo Vecchio C, Serov A, Romero H, Lubers A, Zulevi B, Aricò AS, Baglio V (2019) J Power Sources 437:226948. https://doi.org/10.1016/j.jpowsour.2019.226948

    Article  CAS  Google Scholar 

  5. Lu G, Ning F, Wei J, Li Y, Bai C, Shen Y, Li Y, Zhou X (2020) J Power Sources 450:227669. https://doi.org/10.1016/j.jpowsour.2019.227669

    Article  CAS  Google Scholar 

  6. You PY, Kamarudin SK, Masdar MS (2019) Int J Hydrogen Energy 44(3):1857. https://doi.org/10.1016/j.ijhydene.2018.11.166

    Article  CAS  Google Scholar 

  7. Yan H, Yao S, Yin B, Liang W, Jin X, Feng X, Liu Y, Chen X, Yang C (2019) Appl Catal B: Environ 259:118070. https://doi.org/10.1016/j.apcatb.2019.118070

    Article  CAS  Google Scholar 

  8. Wang XY, Han Z, Duan JJ, Feng JJ, Huang H, Wang AJ (2020) Int J Hydrogen Energy 45(15):8433. https://doi.org/10.1016/j.ijhydene.2020.01.009

    Article  CAS  Google Scholar 

  9. Mouna N, Mohamed LC, Omar K, Maxime P, Meriem D, Randa G, Valérie B, Christine V-U, Aissat F, Abed MA (2021). Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.07.104

    Article  Google Scholar 

  10. Omobosede OF, Hamish AM, Andrea M, Francesco V, Kenneth IO (2015) J Mater Chem A 3:7145–7156. https://doi.org/10.1039/C5TA00076A

    Article  CAS  Google Scholar 

  11. Yongprapat S, Therdthianwong A, Therdthianwong S (2019) J Electroanal Chem 847:113225. https://doi.org/10.1016/j.jelechem.2019.113225

    Article  CAS  Google Scholar 

  12. Zhou J, Hu J, Zhang X, Li J, Jiang K, Liu Y, Zhao G, Wang X, Chu H (2020) J Catal 381:434. https://doi.org/10.1016/j.jcat.2019.11.019

    Article  CAS  Google Scholar 

  13. Palma LM, Almeida TS, De Andrade AR (2013) ECS Trans 58(1):651. https://doi.org/10.1149/05801.0651ecst

    Article  CAS  Google Scholar 

  14. Zhang H, Liang J, Xia B, Li Y, Du S (2019) Front Chem Sci Eng 13(4):695. https://doi.org/10.1007/s11705-019-1838-8

    Article  CAS  Google Scholar 

  15. Sun Q, Gao F, Zhang Y, Wang C, Zhu X, Du Y (2019) J Colloid Interface Sci 556:441. https://doi.org/10.1016/j.jcis.2019.08.085

    Article  CAS  PubMed  Google Scholar 

  16. Castagna RM, Sieben JM, Alvarez AE, Duarte MME (2019) Int J Hydrogen Energy 44(12):5970. https://doi.org/10.1016/j.ijhydene.2019.01.090

    Article  CAS  Google Scholar 

  17. De Souza MBC, Vicente RA, Yukuhiro VY, Pires CTGVMT, Cheuquepán W, Bott-Neto JL, Solla-Gullón J, Fernández PS (2019) Bi-modified Pt Electrodes toward Glycerol Electrooxidation in Alkaline Solution: Effects on Activity and Selectivity. ACS Catal 9(6):5104. https://doi.org/10.1021/acscatal.9b00190

    Article  CAS  Google Scholar 

  18. Iqbal MZ, Siddique S, Khan A, Haider SS, Khalid M (2020) Mater Res Bull 122:110674. https://doi.org/10.1016/j.materresbull.2019.110674

    Article  CAS  Google Scholar 

  19. Zhai C, Sun M, Zhu M, Song S, Jiang S (2017) Appl Surf Sci 407:503. https://doi.org/10.1016/j.apsusc.2017.02.191

    Article  CAS  Google Scholar 

  20. Dong T, Liu W, Ma M, Peng H, Yang S, Tao J, He C, Wang L, Wu P, An T (2020) Chem Eng J 2020(393):124717. https://doi.org/10.1016/j.cej.2020.124717

    Article  CAS  Google Scholar 

  21. Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Shiraishi Y, Du Y, Yang P (2017) Electrochim Acta 245:227. https://doi.org/10.1016/j.electacta.2017.05.146

    Article  CAS  Google Scholar 

  22. Lv H, Wang Y, Lopes A, Xu D, Liu B (2019) Appl Catal B: Environ 249:116. https://doi.org/10.1016/j.apcatb.2019.02.068

    Article  CAS  Google Scholar 

  23. Lv JJ, Wang ZJ, Feng JJ, Qiu R, Wang AJ, Xu X (2016) Appl Catal A: Gen 522:188. https://doi.org/10.1016/j.apcata.2016.02.015

    Article  CAS  Google Scholar 

  24. Li DN, Wang AJ, Wei J, Zhang QL, Feng JJ (2017) Int J Hydrogen Energy 42(31):19894. https://doi.org/10.1016/j.ijhydene.2017.05.186

    Article  CAS  Google Scholar 

  25. Liu X, Bu Y, Cheng T, Cao W, Jiang Q (2019) Electrochim Acta 324:124816. https://doi.org/10.1016/j.electacta.2019.134816

    Article  CAS  Google Scholar 

  26. Nguyen ATN, Shim JH (2018) Appl Surf Sci 458:910. https://doi.org/10.1016/j.apsusc.2018.07.161

    Article  CAS  Google Scholar 

  27. Li X, Zhou Y, Du Y, Xu J (2019) PtCu nanoframes as ultra-high performance electrocatalysts for methanol oxidation. Int J Hydrogen Energy 44(33):18050. https://doi.org/10.1016/j.ijhydene.2019.05.072

    Article  CAS  Google Scholar 

  28. Ye W, Chen S, Ye M, Ye M, Ren C, Ma J, Long R, Wang C, Yang J, Song L, Xiong Y (2017) Nano Energy 39:532. https://doi.org/10.1016/j.nanoen.2017.07.025

    Article  CAS  Google Scholar 

  29. Cui Y, Ma K, Chen Z, Yang J, Geng Z, Zheng J (2020) J Catal 381:427. https://doi.org/10.1016/j.jcat.2019.11.023

    Article  CAS  Google Scholar 

  30. Zanata CR, Martins CA, Teixeira-Neto É, Giz MJ, Camara GA (2019) J Catal 377:358. https://doi.org/10.1016/j.jcat.2019.07.042

    Article  CAS  Google Scholar 

  31. Zhang RL, Feng JJ, Zhang L, Shi CG, Wang AJ (2019) J Colloid Interface Sci 555:276. https://doi.org/10.1016/j.jcis.2019.07.093

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Li X, Huang C, Zhang J (2019) Ionics 25:1943. https://doi.org/10.1007/s11581-019-02902-z

    Article  CAS  Google Scholar 

  33. Wang H, Thia L, Li N, Ge X, Liu Z, Wang X (2015) ACS Catal 5:3174–3180. https://doi.org/10.1021/acscatal.5b00183

    Article  CAS  Google Scholar 

  34. Liao H, Qiu Z, Wan Q, Wang J, Liu Y, Yang N (2014) ACS Appl Mater Interfaces 6(20):18055. https://doi.org/10.1021/am504926r

    Article  CAS  PubMed  Google Scholar 

  35. Huang P, Cheng M, Zhang H, Zuo M, Xiao C, Xie Y (2019) Nano Energy 61:428–434. https://doi.org/10.1016/j.nanoen.2019.05.003

    Article  CAS  Google Scholar 

  36. Bard AJ, Faulkner LR, Methods E (2001) Fundamentals and Applications. John Wiley and Sons Inc., New York

    Google Scholar 

  37. Ning X, Yu H, Peng F, Wang H (2015) J Catal 325:136. https://doi.org/10.1016/j.jcat.2015.02.010

    Article  CAS  Google Scholar 

  38. Gu Y, Zhang Y, Zheng Y, Chen H, Ge L, Guo L (2019) Appl Catal B: Environ 257:117868. https://doi.org/10.1016/j.apcatb.2019.117868

    Article  CAS  Google Scholar 

  39. Bhunia K, Khilari S, Pradhan D (2018) ACS Sustainable Chem Eng 6(6):7769. https://doi.org/10.1021/acssuschemeng.8b00721

    Article  CAS  Google Scholar 

  40. Ahmada MS, Singhb S, Chenga CK, Ongd HR, Abdullaha H, Khana MR, Wongsakulphasatch S (2020) Catal Commun 139:105964. https://doi.org/10.1016/j.catcom.2020.105964

    Article  CAS  Google Scholar 

  41. Inorganic Chemistry. In: Basic Training in Chemistry. Springer, Boston, MA. https://doi.org/https://doi.org/10.1007/0-306-46926-X_2

  42. Houache MSE, Hughes K, Ahmed A, Safari R, Liu H, Botton GA, Baranova EA (2019) ACS Sustainable Chem Eng 7(17):14425. https://doi.org/10.1021/acssuschemeng.9b01070

    Article  CAS  Google Scholar 

  43. Kang Y, Wang W, Pu Y, Li J, Chai D, Lei Z (2017) Chem Eng J 308:419. https://doi.org/10.1016/j.cej.2016.09.087

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengde Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9692 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Zhou, Z. & Huang, C. Factors affecting the catalytic activity of Pd-based electrocatalysts in the electrooxidation of glycerol: element doping and functional groups on the support. Reac Kinet Mech Cat 132, 1151–1164 (2021). https://doi.org/10.1007/s11144-021-01965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01965-2

Keywords

Navigation