Skip to main content
Log in

Catalytic wet peroxide oxidation of a real textile azo dye Cibacron Red P-4B over Al/Fe pillared bentonite catalysts: kinetic and thermodynamic studies

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present work, Al/Fe pillared clay catalysts (Al/Fe-PILCs) with different active metal ratios (Fe/(Fe + Al) molar ratio in the intercalating solution) were prepared by using bentonite clay from Ordu (Fatsa) area in Turkey. Batch experiments were performed to study the catalytic wet peroxide oxidation of Cibacron Red P-4B azo dye on the obtained heterogeneous catalysts. The raw bentonite and catalyst samples were characterized by means of XRD (X-ray diffraction), XRF (X-ray fluorescence), DTA (differential thermal analysis), TG (thermogravimetric analysis), BET (Brunauer–Emmett–Teller), SEM (scanning electron microscopy), EDS (energy dispersive spectrometry) and FTIR (Fourier transform infrared) techniques. The basal spacing (d001) of Al/Fe-PILCs increased with the increase in active metal ratio up to 17.2 Å for the catalyst with 12% active metal ratio (NaBAlFe12). The BET specific surface area and the micropore volume of NaBAlFe12 showed a decrease compared to raw bentonite. The color removal ratio increased with increasing active metal ratio and reached to 99.24% after 4 h reaction for the NaBAlFe12 catalyst. The pseudo-first order kinetic model was well obeyed the experimental data (k = 0.0075 min−1 at 25 °C). The activation energy (Ea) was calculated as 12.26 ± 0.78 kJ mol−1. It was also found that the catalytic oxidation process was endothermic (ΔH = 9.64 ± 0.76 kJ mol−1) and nonspontaneous (ΔG = 95.35 ± 1.46 kJ mol−1). The catalysts were chemically stable and reusable with low release of iron.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Okutucu B, Akkaya A, Pazarlıoğlu NK (2010) Molecularly imprinted polymers for some reactive dyes. Prep Biochem Biotechnol 40:366–376

    Article  CAS  PubMed  Google Scholar 

  2. Essawy AA, El-Hag Ali A, Abdel-Mottaleb MSA (2008) Application of novel copolymer-TiO2 membranes for some textile dyes adsorptive removal from aqueous solution and photocatalytic decolorization. J Hazard Mater 157:547–552

    Article  CAS  PubMed  Google Scholar 

  3. Han J, Zeng HY, Xu S, Chen CR, Liu XJ (2016) Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange. Appl Catal A 527:72–80

    Article  CAS  Google Scholar 

  4. Drasinac N, Erjavec B, Drazic G, Pintar A (2017) Peroxo and gold modified titanium nanotubes for effective removal of methyl orange with CWPO under ambient conditions. Catal Today 280:155–164

    Article  CAS  Google Scholar 

  5. Zazo JA, Bedia J, Fierro CM, Pliego G, Casas JA, Rodriguez JJ (2012) Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors. Catal Today 187:115–121

    Article  CAS  Google Scholar 

  6. Gonzalez B, Perez AH, Trujillano R, Gil A, Vicente MA (2017) Microwave-assisted pillaring of a montmorillonite with Al-polycations in concentrated media. Materials 10:1–8

    Article  Google Scholar 

  7. Gil A, Korili S, Trujillano R, Vicente MA (2011) A review on characterization of pillared clays by specific techniques. Appl Clay Sci 53:97–105

    Article  CAS  Google Scholar 

  8. Roy AD, Forano C, Malki KE, Besse JP (1992). In: Occelli ML, Robson HE (eds) Synthesis of microporous materials. Van Nostrand Reinhold, New York

    Google Scholar 

  9. Barakan S, Aghazadeh V (2019) Synthesis and characterization of hierarchical porous clay heterostructure from Al, Fe -pillared nano-bentonite using microwave and ultrasonic techniques. Microporous Mesoporous Mater 278:138–148

    Article  CAS  Google Scholar 

  10. Guimaraes V, Teixeira AR, Lucas MS, Silva AMT, Peres JA (2019) Pillared interlayered natural clays as heterogeneous photocatalysts for H2O2-assisted treatment of a winery wastewater. Sep Purif Technol 228:115768

    Article  CAS  Google Scholar 

  11. Liu Z, Meng H, Zhang H, Cao J, Zhou K, Lian J (2018) Highly efficient degradation of phenol wastewater by microwave induced H2O2-CuOx/GAC catalytic oxidation process. Sep Purif Technol 193:49–57

    Article  CAS  Google Scholar 

  12. Khankhasaeva ST, Dashinamzhilova ET, Dambueva DV (2017) Oxidative degradation of sulfanilamide catalyzed by Fe/Cu/Al-pillared clays. Appl Clay Sci 146:92–99

    Article  CAS  Google Scholar 

  13. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Elsevier, New York

    Google Scholar 

  14. Grim ER (1968) Clay mineralogy, 2nd edn. McGraw Hill, New York

    Google Scholar 

  15. Tomul F, Balcı S (2007) Synthesis and characterization of Al-pillared interlayered bentonites. Gazi Univ J Sci 21:21–31

    Google Scholar 

  16. Kaloidas V, Koufopanos CA, Gangas NH, Papayannakos NG (1995) Scale-up studies for the preparation of pillared layered clays at 1 kg per batch level. Microporous Mater 5:97–106

    Article  CAS  Google Scholar 

  17. Pennino UD, Mazzega E, Valeri S, Alietti A, Brigatti MF, Poppi L (1981) Interlayer water and swelling properties of monoionic montmorillonites. J Colloid Interf Sci 84:301–309

    Article  Google Scholar 

  18. Yildiz N, Sarikaya Y, Çalimli A (1999) The effect of the electrolyte concentration and pH on the rheological properties of the original and the Na2CO3-activated Kütahya bentonite. Appl Clay Sci 14:319–327

    Article  CAS  Google Scholar 

  19. Galeano LA, Gil A, Vicente MA (2010) Effect of the atomic active metal ratio in Al/Fe-, Al/Cu- and Al/(Fe-Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange. Appl Catal B 100:271–281

    Article  CAS  Google Scholar 

  20. Thorez J (1976) Practical identification of clay minerals: a handbook for teachers and students in clay mineralogy. Institute of Mineralogy, Liege State University, Belgium

    Google Scholar 

  21. Başoğlu FT (2004) Synthesis of Al-pillared layered clays as catalysts and catalyst support and characterization studies. Dissertation, Gazi University, Ankara

  22. Lee DK, Kim DS, Kim SC (2001) Mechanistic studies of hydroxyl radical-induced catalytic wet oxidation of dyehouse effluents at atmospheric pressure. Stud Surf Sci Catal 133:297–302

    Article  CAS  Google Scholar 

  23. Bankovic P, Milutinovic-Nikolic A, Mojovic Z, Jovic-Jovicic N, Zunic M, Dondur V, Jovanovic D (2012) Al, Fe-pillared clays in catalytic decolorization of aqueous tartrazine solutions. Appl Clay Sci 58:73–78

    Article  CAS  Google Scholar 

  24. Zuo S, Huang Q, Li J, Zhou R (2009) Promoting effect of Ce added to metal oxide supported on Al pillared clays for deep benzene oxidation. Appl Catal B 91:204–209

    Article  CAS  Google Scholar 

  25. Gao H, Zhao BX, Luo JC, Wu D, Ye W, Wang Q, Zhang XL (2004) Fe-Ni-Al pillared montmorillonite as a heterogeneous catalyst for the catalytic wet peroxide oxidation degradation of Orange acid II: preparation condition and properties study. Microporous Mesoporous Mater 196:208–215

    Article  Google Scholar 

  26. Hadjltaief HB, Zina MB, Galvez ME, Costa PD (2015) Photo-Fenton oxidation of phenol over a Cu-doped Fe-pillared clay. C R Chim 18:1161–1169

    Article  Google Scholar 

  27. Caglar B, Cubuk O, Demir E, Coldur F, Catir M, Topcu C, Tabak A (2015) Characterization of AlFe-pillared Unye bentonite: a study of the surface acidity and catalytic property. J Mol Struct 1089:59–65

    Article  CAS  Google Scholar 

  28. Sheldon RA, Arends IWCE, Lempers HEB (1998) Liquid phase oxidation at metal ions and complexes in constrained environments. Catal Today 41:387–407

    Article  CAS  Google Scholar 

  29. Molina R, Vieiralcoelho A, Poncelet G (1992) Hydroxy-Al pillaring of concentrated clay suspensions. Clay Clay Miner 40:480–482

    Article  CAS  Google Scholar 

  30. Zhou S, Zhang C, Hu X, Wang Y, Xu R, Xia C, Zhang H, Song Z (2014) Catalytic wet peroxide oxidation of 4-chlorophenol over Al–Fe-, Al–Cu-, and Al–Fe–Cu-pillared clays: sensitivity, kinetics and mechanism. Appl Clay Sci 95:275–283

    Article  CAS  Google Scholar 

  31. Ramirez JH, Maldonado-Hodar FJ, Perez-Cadenas AF, Moreno-Castilla C, Costa CA, Madeira LM (2007) Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Appl Catal B-Environ 75:312–323

    Article  CAS  Google Scholar 

  32. Zhirong L, Uddin MA, Zhanxue S (2011) FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite. Spectrochim Acta A 79:1013–1016

    Article  Google Scholar 

  33. Alabarse FG, Conceicao RV, Balzaretti NM, Schenato F, Xavier AM (2011) In-situ FTIR analyses of bentonite under high-pressure. Appl Clay Sci 51:202–208

    Article  CAS  Google Scholar 

  34. Shah LA, Valenzuela MGS, Farooq M, Khattak SA, Diaz FRV (2018) Influence of preparation methods on textural properties of purified bentonite. Appl Clay Sci 162:155–164

    Article  CAS  Google Scholar 

  35. Baydaroglu F, Özdemir E, Hasimoglu A (2014) An effective synthesis route for improving the catalytic activity of carbon-supported Co-B catalyst for hydrogen generation through hydrolysis of NaBH4. Int J Hydrogen Energy 39:1516–1522

    Article  CAS  Google Scholar 

  36. Mohedano AF, Monsalvo VM, Bedia J, Lopez J, Rodriguez JJ (2014) Highly stable iron catalysts from sewage sludge for CWPO. J Environ Chem Eng 2:2359–2364

    Article  CAS  Google Scholar 

  37. Galeano LA, Vicente MA, Gil A (2011) Treatment of municipal leachate of landfill by Fenton-like heterogeneous catalytic wet peroxide oxidation using an Al/Fe-pillared montmorillonite as active catalyst. Chem Eng J 178:146–153

    Article  CAS  Google Scholar 

  38. Olaya A, Blanco G, Bernal S, Moreno S, Molina R (2009) Synthesis of pillared clays with Al–Fe and Al–Fe–Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction. Appl Catal B 93:56–65

    Article  CAS  Google Scholar 

  39. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  40. Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588–606

    Article  CAS  PubMed  Google Scholar 

  41. Oancea P, Meltzer V (2013) Photo-Fenton process for the degradation of Tartrazine (E102) in aqueous medium. J Taiwan Inst Chem E 44:990–994

    Article  CAS  Google Scholar 

  42. Kondru AK, Kumar P, Chand S (2009) Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst. J Hazard Mater 166:342–347

    Article  CAS  PubMed  Google Scholar 

  43. Feng J, Hu X, Yue PL (2006) Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Res 40:641–646

    Article  CAS  PubMed  Google Scholar 

  44. Barrault J, Abdellaoui M, Bouchoule C, Majeste A, Tatibouet JM, Louloudi A, Papayannakos N, Gangas NH (2000) Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays. Appl Catal B 27:L225–L230

    Article  CAS  Google Scholar 

  45. Fajerwerg K, Debellefontaine H (1996) Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst. Appl Catal B 10:L229–L235

    Article  CAS  Google Scholar 

  46. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  47. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, Berlin

    Book  Google Scholar 

  48. Saleh R, Taufik A (2019) Degradation of methylene blue and congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron (II, III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites. Sep Purif Technol 210:563–573

    Article  CAS  Google Scholar 

  49. Chen J, Zhu L (2007) UV-Fenton discolouration and mineralization of Orange II over hydroxyl-Fe-pillared bentonite. J Photochem Photobiol 188:56–64

    Article  CAS  Google Scholar 

  50. Lal K, Garg A (2017) Utilization of dissolved iron as catalyst during Fenton-like oxidation of pretreated pulping effluent. Process Saf Environ 111:766–774

    Article  CAS  Google Scholar 

  51. Suraj P, Kumar V, Thakur C, Ghosh P (2019) Taguchi optimization of COD removal by heterogeneous Fenton process using copper ferro spinel catalyst in a fixed bed reactor-RTD, kinetic and thermodynamic study. J Environ Chem Eng 7:102859

    Article  CAS  Google Scholar 

  52. Wee SC, Maulianda B, Harolanuar NH, Lee D, Mohshim DF, Zaid HFM, Liew MS, Ayoub MA, Elraies KA, Barati R (2019) Numerical modelling of free energy for methanol and water mixtures for biodiesel production. Fuel 255:115781

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Scientific Research Projects Fund of Eskişehir Osmangazi University by the Project Number: 201615025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlker Kıpçak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kıpçak, İ., Kurtaran Ersal, E. Catalytic wet peroxide oxidation of a real textile azo dye Cibacron Red P-4B over Al/Fe pillared bentonite catalysts: kinetic and thermodynamic studies. Reac Kinet Mech Cat 132, 1003–1023 (2021). https://doi.org/10.1007/s11144-021-01962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01962-5

Keywords

Navigation