Skip to main content
Log in

Platinum catalysts supported on ZSM5 zeolites with a hierarchical pore structure: characterization and performance in n-hexadecane hydroconversion

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

HZSM5 zeolites with a hierarchical pore structure were prepared from a microporous one using the top-down methodology by treatment with a sodium hydroxide solution in optimal conditions of time, alkali concentration and temperature. These materials were used as supports for platinum to produce bifunctional hydroconversion catalysts. The activity in n-hexadecane hydroconversion was one order of magnitude larger on Pt supported on the mesoporous than on the untreated zeolite and one order of magnitude larger than that of the supports. All Pt catalysts and supports were more selective to hydrocracking than to hydroisomerization, but the initial selectivity for hydroisomerization of the Pt catalysts supported on the mesoporous supports was considerably smaller than that of all other materials, including the supports. This was attributed to a smaller mass transfer limitation with the Pt catalysts supported on the mesoporous zeolites. All supports and catalysts were extensively characterized by techniques such as X-ray diffraction, hydrogen chemisorption, TPD of ammonia, IR spectroscopy of adsorbed pyridine, MAS 29Si and 27Al solid state NMR and transmission electron microscopy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data and material are available upon request.

Code availability

Not applicable to this submission.

References

  1. Blasco T, Chica A, Corma A et al (2006) Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties. J Catal 242:153–161. https://doi.org/10.1016/j.jcat.2006.05.027

    Article  CAS  Google Scholar 

  2. Corma A (1993) Transformation of hydrocarbons on zeolite catalysts. Catal Lett 22:33–52. https://doi.org/10.1007/BF00811768

    Article  CAS  Google Scholar 

  3. Park K-C, Ihm S-K (2000) Comparison of Pt/zeolite catalysts for n-hexadecane hydroisomerization. Appl Catal A 203:201–209. https://doi.org/10.1016/S0926-860X(00)00490-7

    Article  CAS  Google Scholar 

  4. Taylor RJ, Petty RH (1994) Selective hydroisomerization of long chain normal paraffins. Appl Catal A 119:121–138. https://doi.org/10.1016/0926-860X(94)85029-1

    Article  CAS  Google Scholar 

  5. Mäki-Arvela P, Kaka Khel TA, Azkaar M et al (2018) Catalytic hydroisomerization of long-chain hydrocarbons for the production of fuels. Catalysts 8:2–27. https://doi.org/10.3390/catal8110534

    Article  CAS  Google Scholar 

  6. Zhang Q, Kang J, Wang Y (2010) Development of novel catalysts for Fischer–Tropsch synthesis: tuning the product selectivity. ChemCatChem 2:1030–1058. https://doi.org/10.1002/cctc.201000071

    Article  CAS  Google Scholar 

  7. Mahmoudi H, Mahmoudi M, Doustdar O et al (2018) A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng 2:11–31. https://doi.org/10.1515/bfuel-2017-0002

    Article  Google Scholar 

  8. Falabella E, Noronha FB, Faro A Jr (2011) The main catalytic challenges in GTL (gas-to-liquids) processes. Catal Sci Technol 1:698–713. https://doi.org/10.1039/c1cy00116g

    Article  CAS  Google Scholar 

  9. Claude MC, Martens JA (2000) Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst. J Catal 190:39–48. https://doi.org/10.1006/jcat.1999.2714

    Article  CAS  Google Scholar 

  10. Saxena SK, Viswanadham N, Garg MO (2013) Cracking and isomerization functionalities of bi-metallic zeolites for naphtha value upgradation. Fuel 107:432–438. https://doi.org/10.1016/j.fuel.2013.01.076

    Article  CAS  Google Scholar 

  11. Deldari H (2005) Suitable catalysts for hydroisomerization of long-chain normal paraffins. Appl Catal A 293:1–10. https://doi.org/10.1016/j.apcata.2005.07.008

    Article  CAS  Google Scholar 

  12. Hengsawad T, Srimingkwanchai C, Butnark S et al (2018) Effect of metal–acid balance on hydroprocessed renewable jet fuel synthesis from hydrocracking and hydroisomerization of biohydrogenated diesel over Pt-supported catalysts. Ind Eng Chem Res 57:1429–1440. https://doi.org/10.1021/acs.iecr.7b04711

    Article  CAS  Google Scholar 

  13. Martens JA, Uytterhoeven L, Jacobs PA, Froment GF (1993) Isomerization of long-chain n-alkanes on the Pt/H-ZSM5-22 and Pt/H-Y zeolites catalysts and their intimate mixtures. Stud Surf Sci Catal 75:2829–2832. https://doi.org/10.1016/S0167-2991(08)64416-X

    Article  CAS  Google Scholar 

  14. Liu Y, Liu C, Liu C et al (2004) Sn-modified Pt/SAPO-11 catalysts for selective hydroisomerization of n-paraffins. Energy Fuels 18:1266–1271. https://doi.org/10.1021/ef049968x

    Article  CAS  Google Scholar 

  15. Alvarez F, Ribeiro FR, Perot G et al (1996) Hydroisomerization and hydrocracking of alkanes-influence of the balance between acid and hydrogenating functions on the transformation of n-decane on PtHY catalysts. J Catal 162:179–189. https://doi.org/10.1006/jcat.1996.0275

    Article  CAS  Google Scholar 

  16. Chi K, Zhao Z, Tian Z et al (2013) Hydroisomerization performance of platinum supported on ZSM-22/ZSM-23 intergrowth zeolite catalyst. Pet Sci 10:242–250. https://doi.org/10.1007/s12182-013-0273-6

    Article  CAS  Google Scholar 

  17. Zhang Y, Wang W, Jiang X et al (2017) Hydroisomerization of n-hexadecane over the Pd-Ni2P/SAPO-31 bifunctional catalyst: synergistic effect of bimetallic active sites. Catal Sci Technol 8:817–828. https://doi.org/10.1039/C7CY02106B

    Article  Google Scholar 

  18. Parton R, Uytterhoeven L, Martens JA et al (1991) Synergism of ZSM-22 and Y zeolites in the bifunctional conversion of n-alkanes. Appl Catal 76:131–142. https://doi.org/10.1016/0166-9834(91)80009-L

    Article  CAS  Google Scholar 

  19. Girgis MJ, Tsao YP (1996) Impact of catalyst metal–acid balance in n-hexadecane hydroisomerization and hydrocracking. Ind Eng Chem Res 35:386–396. https://doi.org/10.1021/ie9501586

    Article  CAS  Google Scholar 

  20. Walendziewski J, Pniak B (2003) Synthesis, physicochemical properties and hydroisomerization activity of SAPO-11 based catalysts. Appl Catal A 250:39–47. https://doi.org/10.1016/S0926-860X(03)00190-X

    Article  CAS  Google Scholar 

  21. Guisnet M (2013) “Ideal” bifunctional catalysis over Pt-acid zeolites. Catal Today 218–219:123–134. https://doi.org/10.1016/j.cattod.2013.04.028

    Article  CAS  Google Scholar 

  22. Konnov SV, Ivanova II, Ponomareva OA, Zaikovskii VI (2012) Hydroisomerization of n -alkanes over Pt-modified micro/mesoporous materials obtained by mordenite recrystallization. Microporous Mesoporous Mater 164:222–231. https://doi.org/10.1016/j.micromeso.2012.08.017

    Article  CAS  Google Scholar 

  23. Heracleous E, Iliopoulou EF, Lappas AA (2013) Microporous/mesoporous Pt/ZSM5 catalysts for hydroisomerization of BTL-naphtha. Ind Eng Chem Res 52:14567–14573. https://doi.org/10.1021/ie402354t

    Article  CAS  Google Scholar 

  24. Corma A, Fornes V, Pergher SB et al (1998) Delaminated zeolite precursors as selective acidic catalysts. Nature 396:353–356. https://doi.org/10.1038/24592

    Article  CAS  Google Scholar 

  25. Liu Y, Pinnavaia TJ (2003) Aluminosilicate nanoparticles for catalytic hydrocarbon cracking. J Am Chem Soc 125:2376–2377. https://doi.org/10.1021/ja029336u

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Shijian Z, Yuming Z et al (2013) Influence of the alkali treatment of HZSM-5 zeolite on catalytic performance of PtSn-based catalyst for propane dehydrogenation. China Pet Process Petrochem Technol 15:11–18

    Google Scholar 

  27. Corma A, Miguel PJ, Orchillés AV (1994) Influence of hydrocarbon chain length and zeolite structure on the catalyst activity and deactivation for n-alkanes cracking. Appl Catal A 117:29–40. https://doi.org/10.1016/0926-860X(94)80156-8

    Article  CAS  Google Scholar 

  28. Martens JA, Jacobs PA, Weitkamp JA (1986) Attempts to rationalize the distribution of hydrocracked products. I. Relative rates of primary hydrocracking modes of long chain paraffins in open zeolites. Appl Catal 20:239–281. https://doi.org/10.1016/0166-9834(86)80020-3

    Article  CAS  Google Scholar 

  29. Souverijns W, Martens JA, Froment GF, Jacobs PA (1998) Hydrocracking of isoheptadecanes on Pt/H-ZSM-22: an example of pore mouth catalysis. J Catal 174:177–184. https://doi.org/10.1006/jcat.1998.1959

    Article  CAS  Google Scholar 

  30. Christensen C, Schmidt I, Christensen CH (2004) Improved performance of mesoporous zeolite single crystals in catalytic cracking and isomerization of n-hexadecane. Catal Commun 5:543–546. https://doi.org/10.1016/j.catcom.2004.07.003

    Article  CAS  Google Scholar 

  31. Wang D, Xu L, Wu P (2014) Hierarchical, core-shell meso-ZSM-5 mesoporous aluminosilicate-supported Pt nanoparticles for bifunctional hydrocracking. J Mater Chem A 2:15535–15545. https://doi.org/10.1039/c4ta02740j

    Article  CAS  Google Scholar 

  32. Groen J, Zhu W, Brouwer S et al (2007) Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J Am Chem Soc 129:355–360. https://doi.org/10.1021/ja065737o

    Article  CAS  PubMed  Google Scholar 

  33. Tempelman CHL, Rodrigues VO, van Eck E et al (2015) Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization. Microporous Mesoporous Mater 203:259–273. https://doi.org/10.1016/j.micromeso.2014.10.020

    Article  CAS  Google Scholar 

  34. Treacy MM, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  35. Rac V, Rakíc V, Miladinovíc Z et al (2013) Influence of the desilication process on the acidity of HZSM-5 zeolite. Thermochim Acta 567:73–78. https://doi.org/10.1016/j.tca.2013.01.008

    Article  CAS  Google Scholar 

  36. Rodrigues VO, Eon J-G, Faro Jr AC (2010) Correlations between dispersion, acidity, reducibility, and propane aromatization activity of gallium species supported on HZSM5 zeolites. J Phys Chem C 114:4557–4567. https://doi.org/10.1021/jp910642p

    Article  CAS  Google Scholar 

  37. Biligetu T, Wang Y, Nishitoba T et al (2017) Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols. J Catal 353:1–10. https://doi.org/10.1016/j.jcat.2017.06.026

    Article  CAS  Google Scholar 

  38. Freel J (1972) Chemisorption on supported platinum. I. Evaluation of a pulse method. J Catal 25:139–148. https://doi.org/10.1016/0021-9517(72)90211-4

    Article  CAS  Google Scholar 

  39. Figueiredo JL, Ramôa Ribeiro F (2007) Catálise Heterogênea, 2nd edn. Serviço de Educação e Bolsas, Lisboa

    Google Scholar 

  40. Fricke R, Kosslick H, Lischke G, Richter M (2000) Incorporation of gallium into zeolites: syntheses, properties and catalytic application. Chem Rev (Washington, DC, U S) 100:2303–2405. https://doi.org/10.1021/cr9411637

    Article  CAS  Google Scholar 

  41. Gil B, Mokrzycki Ł, Sulikowski B et al (2010) Desilication of ZSM-5 and ZSM-12 zeolites: impact on textural, acidic and catalytic properties. Catal Today 152:24–32. https://doi.org/10.1016/j.cattod.2010.01.059

    Article  CAS  Google Scholar 

  42. Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramírez J (2004) Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids Surf A 241:53–58. https://doi.org/10.1016/j.colsurfa.2004.04.012

    Article  CAS  Google Scholar 

  43. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  44. Groen JC, Bach T, Ziese U et al (2005) Creation of hollow zeolite architectures by controlled desilication of A1-zoned ZSM-5 crystals. J Am Chem Soc 127:10792–10793. https://doi.org/10.1021/ja052592x

    Article  CAS  PubMed  Google Scholar 

  45. van den Broek ACM, van Grondelle J, van Santen RA (1997) Preparation of highly dispersed platinum particles in HZSM-5 zeolite: a study of the pretreatment process of [Pt(NH3)4]2+. J Catal 167:417–424. https://doi.org/10.1006/jcat.1997.1600

    Article  Google Scholar 

  46. Zheng J, Dong J, Xu Q, Hu C (1996) The function of zeolite on Pt autoreduction and dispersion in Pt/L and Pi/β catalysts. Catal Lett 37:25–28. https://doi.org/10.1007/BF00813514

    Article  CAS  Google Scholar 

  47. Holm M, Svelle S, Joensen F et al (2009) Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2, 4, 6-trimethylpyridine (collidine) as molecular probes. Appl Catal A 356:23–30. https://doi.org/10.1016/j.apcata.2008.11.033

    Article  CAS  Google Scholar 

  48. Trombetta M, Armaroli T, Gutiérrez A et al (2000) An FT-IR study of the internal and external surfaces of HZSM5 zeolite. Appl Catal A 192:125–136. https://doi.org/10.1016/S0926-860X(99)00338-5

    Article  CAS  Google Scholar 

  49. Su B-L, Norberg V (1997) Characterization of the Brønsted acid properties of H(Na)-Beta zeolite by infrared spectroscopy and thermal analysis. Zeolites 19:65–74. https://doi.org/10.1016/S0144-2449(97)00048-1

    Article  CAS  Google Scholar 

  50. Campbell SM, Bibby DM, Coddington JM et al (1996) Dealumination of HZSM-5 zeolites. J Catal 161:338–349. https://doi.org/10.1006/jcat.1996.0191

    Article  CAS  Google Scholar 

  51. Szanyi J, Paffett MT (1996) The adsorption of carbon monoxide on H-ZSM-5 and hydrothermally treated H-ZSM-5. Microporous Mater 7:201–218. https://doi.org/10.1016/0927-6513(96)00046-6

    Article  CAS  Google Scholar 

  52. Brand H, Redondo A, Hay PJ (1997) Theoretical studies of CO adsorption on H-ZSM-5 and hydrothermally treated H-ZSM-5. J Mol Catal A Chem 121:45–62. https://doi.org/10.1016/S1381-1169(96)00456-6

    Article  CAS  Google Scholar 

  53. Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354. https://doi.org/10.1006/jcat.1993.1145

    Article  CAS  Google Scholar 

  54. Verboekend D, Mitchell S, Milina M et al (2011) Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication. J Phys Chem C. https://doi.org/10.1021/jp201671s

    Article  Google Scholar 

  55. Katada N, Igi H, Kim JH, Niwa M (1997) Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium. J Phys Chem B 101:5969–5977. https://doi.org/10.1021/jp9639152

    Article  CAS  Google Scholar 

  56. Lonyi F, Valyon J (2001) A TPD and IR study of the surface species formed from ammonia on zeolite H-ZSM-5, H-mordenite and H-beta. Thermochim Acta 373:53–57. https://doi.org/10.1016/S0040-6031(01)00458-0

    Article  CAS  Google Scholar 

  57. Sandoval-Díaz LE, González-Amaya JA, Trujillo CA (2015) General aspects of zeolite acidity characterization. Microporous Mesoporous Mater 215:229–243. https://doi.org/10.1016/j.micromeso.2015.04.038

    Article  CAS  Google Scholar 

  58. Niwa M, Katada N (1997) Measurements of acidic property of zeolites by temperature programmed desorption of ammonia. Catal Surv Jpn 1:215–226. https://doi.org/10.1023/A:1019033115091

    Article  CAS  Google Scholar 

  59. Rodríguez-González L, Hermes F, Bertmer M et al (2007) The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Appl Catal A 328:174–182. https://doi.org/10.1016/j.apcata.2007.06.003

    Article  CAS  Google Scholar 

  60. Maesen TLM, Calero S, Schenk M, Smit B (2004) Alkane hydrocracking: shape selectivity or kinetics? J Catal 221:241–251. https://doi.org/10.1016/j.jcat.2003.07.003

    Article  CAS  Google Scholar 

  61. Muñoz JA, Martens GG, Froment GF et al (2000) Hydrocracking and isomerization of n-paraffin mixtures and a hydrotreated gasoil on Pt/ZSM-22: confirmation of pore mouth and key–lock catalysis in liquid phase. Appl Catal A 192:9–22. https://doi.org/10.1016/S0926-860X(99)00331-2

    Article  Google Scholar 

  62. Martens JA, Vanbutsele G, Jacobs PA et al (2001) Evidences for pore mouth and key–lock catalysis in hydroisomerization of long n-alkanes over 10-ring tubular pore bifunctional zeolites. Catal Today 65:111–116. https://doi.org/10.1016/S0920-5861(00)00577-0

    Article  CAS  Google Scholar 

  63. Batalha N, Pinard L, Bouchy C et al (2013) n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites. J Catal 307:122–131. https://doi.org/10.1016/j.jcat.2013.07.014

    Article  CAS  Google Scholar 

  64. De Lucas A, Sánchez P, Dorado F et al (2005) Effect of the metal loading in the hydroisomerization of n-octane over beta agglomerated zeolite based catalysts. Appl Catal A 294:215–225. https://doi.org/10.1016/j.apcata.2005.07.035

    Article  CAS  Google Scholar 

  65. Vityuk A, Khivantsev K, Aleksandrov HA et al (2019) ACS Catal 9:839–847. https://doi.org/10.1021/acscatal.8b04000

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank LABNANO at Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro for the TEM measurements. The authors acknowledge the XRD and NMR multiuser laboratories at IQ-UFRJ for sample analysis. ACFJ thanks CNPq for a productivity research scholarship. HJM thanks CAPES for a D.Sc. scholarship. The authors also thank CNPq for the financial support (Grant 426600/2018-5). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Funding

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant 426600/2018–5) and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

HM: Investigation, Writing—Original Draft; YL: Investigation; VR: Conceptualization, Methodology, Writing—Review & Editing, Supervision; AF: Conceptualization, Methodology, Writing—Review & Editing, Project administration.

Corresponding author

Correspondence to Arnaldo C. Faro Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1119 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesa, H.J., Licea, Y.E., Rodrigues, V.d.O. et al. Platinum catalysts supported on ZSM5 zeolites with a hierarchical pore structure: characterization and performance in n-hexadecane hydroconversion. Reac Kinet Mech Cat 132, 463–483 (2021). https://doi.org/10.1007/s11144-020-01920-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01920-7

Keywords

Navigation