Skip to main content
Log in

Effect of P sources on the phosphorus modified MCM-22 for n-hexane catalytic cracking

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, phosphoric acid (PA), tributylphosphine (TBP) and phenylphosphonic acid (PPA) were chosen as the P sources to modify MCM-22 through incipient impregnation followed by calcination. The acidity, Al distribution and structure of modified samples were characterized by XRD, N2 physical adsorption, NH3-TPD, 31P MAS NMR, 27Al MAS NMR and XPS. Their catalytic performance upon cracking of n-hexane was also examined. The experimental results demonstrated that all the phosphorus modified samples showed a better catalytic life than that of the parent MCM-22, which can be attributed to acidity reduction and changes in Al distribution. However, the destruction of structure during modification will make the extension of lifetime insignificant. Among all the P sources, TBP/MCM-22, with the lowest acid and the smallest amount of Al content in the T2 sites but the least destruction of zeolite structure, exhibited the best stability and over 70% conversion with time on stream of 35 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hou X, Qiu Y, Yuan EX, Li FQ, Li ZZ, Ji S, Yang ZN, Liu GZ, Zhang XW (2017) Promotion on light olefins production through modulating the reaction pathways for n-pentane catalytic cracking over ZSM-5 based catalysts. Appl Catal A Gen 543:51–60. https://doi.org/10.1016/j.apcata.2017.06.013

    Article  CAS  Google Scholar 

  2. Zhang XX, Cheng DG, Chen FQ, Zhan XL (2017) n-Heptane catalytic cracking on hierarchical ZSM-5 zeolite: the effect of mesopores. Chem Eng Sci 168:352–359. https://doi.org/10.1016/j.ces.2017.05.012

    Article  CAS  Google Scholar 

  3. Asadi S, Vafi L, Karimzadeh R (2018) Catalytic cracking of propane over impregnated mesoporous ZSM-5: a strategy to change product distribution by sequential modification. Microporous Mesoporous Mater 255:253–260. https://doi.org/10.1016/j.micromeso.2017.07.018

    Article  CAS  Google Scholar 

  4. Chen F, Ma L, Cheng D-G, Zhan X (2012) Synthesis of hierarchical porous zeolite and its performance in n-heptane cracking. Catal Commun 18:110–114. https://doi.org/10.1016/j.catcom.2011.11.033

    Article  CAS  Google Scholar 

  5. Rahimi N, Karimzadeh R (2011) Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A 398(1–2):1–17. https://doi.org/10.1016/j.apcata.2011.03.009

    Article  CAS  Google Scholar 

  6. Rubin MK, Bala CP, Chu P, West DN (1990) Composition of synthetic porous crystalline material, its synthesis and use. American Patent

  7. Leonowicz ME, Lawton JA, Lawton SL, Rubin MK (1994) MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264(5167):1910. https://doi.org/10.1126/science.264.5167.1910

    Article  CAS  PubMed  Google Scholar 

  8. Corma A, Gonzàlez-Alfaro V, Orchillès AV (1995) Catalytic cracking of alkanes on MCM-22 zeolite. Comparison with ZSM-5 and beta zeolite and its possibility as an FCC cracking additive. Appl Catal A Gen 129(2):203–215. https://doi.org/10.1016/0926-860X(95)00081-X

    Article  CAS  Google Scholar 

  9. Lawton SL, Leonowicz ME, Partridge RD, Chu P, Rubin MK (1998) Twelve-ring pockets on the external surface of MCM-22 crystals. Microporous Mesoporous Mater 23(1):109–117. https://doi.org/10.1016/S1387-1811(98)00057-2

    Article  CAS  Google Scholar 

  10. Wang Y, Yokoi T, Namba S, Kondo JN, Tatsumi T (2015) Catalytic cracking of n-hexane for producing propylene on MCM-22 zeolites. Appl Catal A 504:192–202. https://doi.org/10.1016/j.apcata.2014.12.018

    Article  CAS  Google Scholar 

  11. Meloni D, Laforge S, Martin D, Guisnet M, Rombi E, Solinas V (2001) Acidic and catalytic properties of H-MCM-22 zeolites: 1. Characterization of the acidity by pyridine adsorption. Appl Catal A Gen 215(1):55–66. https://doi.org/10.1016/S0926-860X(01)00501-4

    Article  CAS  Google Scholar 

  12. Zhang L, Wang H, Liu G, Gao K, Wu J (2017) Conversion of methanol to light olefins over H-MCM-22 dealuminated with different methods. J Chem Technol Biotechnol 92(6):1353–1361. https://doi.org/10.1002/jctb.5130

    Article  CAS  Google Scholar 

  13. Wang Y, Yokoi T, Namba S, Kondo JN, Tatsumi T (2016) Improvement of catalytic performance of MCM-22 in the cracking of n-hexane by controlling the acidic property. J Catal 333:17–28. https://doi.org/10.1016/j.jcat.2015.10.011

    Article  CAS  Google Scholar 

  14. Wang S, Li S, Zhang L, Qin Z, Dong M, Li J, Wang J, Fan W (2017) Influence of acid sites distribution of zeolites on their catalytic performance in methanol to olefins (MTO): a review. Scientia Sinica Chimica 47(11):1262–1272. https://doi.org/10.1360/n032017-00129

    Article  Google Scholar 

  15. Wang Y, Zhuang J, Yang G, Zhou D, Ma D, Han X, Bao X (2004) Study on the external surface acidity of MCM-22 zeolite: theoretical calculation and 31P MAS NMR. J Phys Chem B 108(4):1386–1391. https://doi.org/10.1021/jp034989y

    Article  CAS  Google Scholar 

  16. Chen JL, Liang TY, Li JF, Wang S, Qin ZF, Wang PF, Huang LZ, Fan WB, Wang JG (2016) Regulation of framework aluminum siting and acid distribution in H-MCM-22 by boron incorporation and its effect on the catalytic performance in methanol to hydrocarbons. ACS Catal 6(4):2299–2313. https://doi.org/10.1021/acscatal.5b02862

    Article  CAS  Google Scholar 

  17. Ledendecker M, Calderýn SK, Papp C, Steinrîck H-P, Antonietti M, Shalom M (2015) The synthesis of nanostructured Ni5P4 films and their use as a nonnoble bifunctional electrocatalyst for full water splitting. Angew Chem Int Ed 54:12361–12365. https://doi.org/10.1002/anie.201502438

    Article  CAS  Google Scholar 

  18. Rajkumara T, Sápia A, Ábela M, Halasia G, Kiss J, Gómez-Pérez JF, Bali H, Kukovecz Á, Kónya Z (2020) Phosphorus-loaded alumina supported nickel catalysts for CO2 hydrogenation: Ni2P/Ni5P12 drives activity. Mol Catal 494:111113. https://doi.org/10.1016/j.mcat.2020.111113

    Article  CAS  Google Scholar 

  19. Zhao Y, Liu J, He N, Liu C, Guo H (2019) A comparison on the hydrothermal stability of nano-sized H-ZSM-5 zeolite modified by ammonium dihydrogen phosphate and trimethylphosphate. Catal Lett 149(8):2169–2179. https://doi.org/10.1007/s10562-019-02778-8

    Article  CAS  Google Scholar 

  20. van der Bij HE, Aramburo LR, Arstad B, Dynes JJ, Wang J, Weckhuysen BM (2014) Phosphatation of zeolite H-ZSM-5: a combined microscopy and spectroscopy study. ChemPhysChem 15(2):283–292. https://doi.org/10.1002/cphc.201300910

    Article  CAS  PubMed  Google Scholar 

  21. van der Bij HE, Meirer F, Kalirai S, Wang J, Weckhuysen BM (2014) Hexane cracking over steamed phosphated zeolite H-ZSM-5: promotional effect on catalyst performance and stability. Chemistry 20(51):16922–16932. https://doi.org/10.1002/chem.201404924

    Article  CAS  PubMed  Google Scholar 

  22. Tian L, Li J, Li Y, Chen B (2008) Synthesis of dodecylbenzene with benzene and 1-dodecene over MCM-22 zeolite modified with phosphorus. Chin J Catal 29(9):889–894. https://doi.org/10.1016/S1872-2067(08)60070-4

    Article  CAS  Google Scholar 

  23. Corma A, Corell C, Perezpariente J (1995) Synthesis and characterization of the MCM-22 zeolite. Zeolites 15(1):2–8. https://doi.org/10.1016/0144-2449(94)00013-i

    Article  CAS  Google Scholar 

  24. Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K-P, Kolboe S, Bjørgen M (2006) Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J Am Chem Soc 128(46):14770–14771. https://doi.org/10.1021/ja065810a

    Article  CAS  PubMed  Google Scholar 

  25. Xue N, Chen X, Nie L, Guo X, Ding W, Chen Y, Gu M, Xie Z (2007) Understanding the enhancement of catalytic performance for olefin cracking: hydrothermally stable acids in P/HZSM-5. J Catal 248(1):20–28. https://doi.org/10.1016/j.jcat.2007.02.022

    Article  CAS  Google Scholar 

  26. Müller D, Jahn E, Ladwig G, Haubenreisser U (1984) High-resolution solid-state 27Al and 31P NMR: correlation between chemical shift and mean Al-O-P angle in AlPO4 polymorphs. Chem Phys Lett 109(4):332–336. https://doi.org/10.1016/0009-2614(84)85596-7

    Article  Google Scholar 

  27. Blackwell CS, Patton RL (1984) Aluminum-27 and phosphorus-31 nuclear magnetic resonance studies of aluminophosphate molecular sieves. J Phys Chem 88(25):6135–6139. https://doi.org/10.1021/j150669a016

    Article  CAS  Google Scholar 

  28. van der Bij HE, Weckhuysen BM (2015) Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chem Soc Rev 44(20):7406–7428. https://doi.org/10.1039/c5cs00109a

    Article  PubMed  PubMed Central  Google Scholar 

  29. Danisi RM, Schmidt JE, Lucini Paioni A, Houben K, Poplawsky JD, Baldus M, Weckhuysen BM, Vogt ETC (2018) Revealing long- and short-range structural modifications within phosphorus-treated HZSM-5 zeolites by atom probe tomography, nuclear magnetic resonance and powder X-ray diffraction. Phys Chem Chem Phys 20(44):27766–27777. https://doi.org/10.1039/c8cp03828g

    Article  CAS  PubMed  Google Scholar 

  30. Lischke G, Eckelt R, Jerschkewitz HG, Parlitz B, Schreier E, Storek W, Zibrowius B, Öhlmann G (1991) Spectroscopic and physicochemical characterization of P-Modified H-ZSM-5. J Catal 132(1):229–243. https://doi.org/10.1016/0021-9517(91)90259-7

    Article  CAS  Google Scholar 

  31. Kolodziejski W, Zicovich-Wilson C, Corell C, Perez-Pariente J, Corma A (1995) 27Al and 29Si MAS NMR study of zeolite MCM-22. J Phys Chem 99(18):7002–7008. https://doi.org/10.1021/j100018a037

    Article  CAS  Google Scholar 

  32. Hunger M, Ernst S, Steuernagel S, Weitkamp J (1996) High-field 1H MAS NMR investigations of acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H-ZSM-58 and H-MCM-22. Microporous Mater 6(5):349–353. https://doi.org/10.1016/0927-6513(96)00043-0

    Article  CAS  Google Scholar 

  33. Mériaudeau P, Tuel A, Vu TTH (1999) On the localization of tetrahedral aluminum in MCM-22 zeolite. Catal Lett 61(1):89–92. https://doi.org/10.1023/A:1019091915381

    Article  Google Scholar 

  34. Liu K, Liu S, Xie S, Wei H, Song C, Li X, Xu L (2014) Realumination of MCM-22 zeolite and its application in alkylation reaction. Catal Lett 144(7):1223–1232. https://doi.org/10.1007/s10562-014-1256-y

    Article  CAS  Google Scholar 

  35. Lv J, Hua Z, Ge T, Zhou J, Zhou J, Liu Z, Guo H, Shi J (2017) Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking. Microporous Mesoporous Mater 247:31–37. https://doi.org/10.1016/j.micromeso.2017.03.037

    Article  CAS  Google Scholar 

  36. Sang Y, Li H (2019) Effect of phosphorus and mesopore modification on the HZSM-5 zeolites for n-decane cracking. J Solid State Chem 271:326–333. https://doi.org/10.1016/j.jssc.2019.01.016

    Article  CAS  Google Scholar 

  37. Gil-Horán RH, Chavarría-Hernández JC, Quintana-Owen P, Gutiérrez-Alejandre A (2020) Ethanol conversion to short-chain olefins over ZSM-5 zeolite catalysts enhanced with P, Fe, and Ni. Top Catal. https://doi.org/10.1007/s11244-020-01229-8

    Article  Google Scholar 

  38. Li J-W, Li T, Ma H-F, Sun Q-W, Ying W-Y, Fang D-Y (2017) Effect of nickel on phosphorus modified HZSM-5 in catalytic cracking of butene and pentene. Fuel Process Technol 159:31–37. https://doi.org/10.1016/j.fuproc.2016.06.034

    Article  CAS  Google Scholar 

  39. Huang C, Puziy AM, Poddubnaya OI, Hulicova-Jurcakova D, Sobiesiak M, Gawdzik B (2018) Phosphorus, nitrogen and oxygen co-doped polymer-based core-shell carbon sphere for high-performance hybrid supercapacitors. Electrochim Acta 270:339–351. https://doi.org/10.1016/j.electacta.2018.02.115

    Article  CAS  Google Scholar 

  40. Huang C, Puziy AM, Sun T, Poddubnaya OI, Suárez-García F, Tascón JMD, Hulicova-Jurcakova D (2014) Capacitive behaviours of phosphorus-rich carbons derived from lignocelluloses. Electrochim Acta 137:219–227. https://doi.org/10.1016/j.electacta.2014.05.101

    Article  CAS  Google Scholar 

  41. Lü Q, Lin X, Wang L, Gao J, Bao X (2016) On-stream stability enhancement of HZSM-5 based fluid catalytic cracking naphtha hydro-upgrading catalyst via magnesium modification. Catal Commun 83:31–34. https://doi.org/10.1016/j.catcom.2016.05.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SB: investigation, formal analysis, data curation, writing, revision. MG: investigation, formal analysis, data curation, writing. BL: writing—review and editing, data curation, methodology. BF: data curation. BJ: supervision, project administration. HZ: conceptualization, resources, data curation, writing—review and editing, project administration, funding acquisition.

Corresponding author

Correspondence to Hong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, S., Guo, M., Liu, B. et al. Effect of P sources on the phosphorus modified MCM-22 for n-hexane catalytic cracking. Reac Kinet Mech Cat 132, 431–447 (2021). https://doi.org/10.1007/s11144-020-01903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01903-8

Keywords

Navigation