Skip to main content
Log in

Effect of polyvinylpyrrolidone on the catalytic properties of Pd/γ-Fe2O3 in phenylacetylene hydrogenation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Maghemite nanoparticles modified with polyvinylpyrrolidone were synthesized using the chemical co-precipitation method. Palladium ions have then been immobilized on the PVP/γ-Fe2O3 magnetic support. The Pd-PVP/γ-Fe2O3 catalyst obtained was characterized using X-ray diffraction, thermogravimetry coupled with differential scanning calorimetry and quadrupole mass spectrometry, scanning electron microscopy combined with energy dispersive X-ray analysis, transmission electron microscopy, nitrogen adsorption–desorption and vibrating sample magnetometry. Morphology, microstructure, particle sizes and textural properties of the Pd-PVP/γ-Fe2O3 were compared with those of the unmodified Pd/γ-Fe2O3 catalyst, synthesized using the same method. The polymer has affected the size of γ-Fe2O3 nanoparticles and their agglomeration, forming compact microstructure with decreased mesopores (4.5 nm). Palladium nanoparticles with size of 3–5 nm were found both on the surface of the PVP/γ-Fe2O3 particles (6–10 nm) and inside the pores formed by them. The Pd-PVP/γ-Fe2O3 has demonstrated improved catalytic properties in phenylacetylene hydrogenation under mild conditions of 40 °C and 0.1 MPa, compared to Pd/γ-Fe2O3 and similar catalysts prepared using polyethylene glycol and pectin. The hydrogenation rate of C–C triple bond on Pd-PVP/γ-Fe2O3 achieved 2.8 × 10–6 mol s−1 and selectivity to styrene was 92%. The catalyst showed weak ferromagnetic and soft magnetic properties (MS = 51 emu g−1, Mr = 5.4 emu g−1, and HC = 71 Oe) and, therefore, can be easily recovered with an external magnet and reused for at least 11 runs without significant degradation in the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Govan J, Gun’ko YK (2014) Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials 4:222–241

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shifrina ZB, Bronstein LM (2018) Magnetically recoverable catalysts: beyond magnetic separation. Front Chem 6:298

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abu-Dief AM, Abdel-Fatah SM (2018) Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef Univ J Basic Appl Sci 7:55–67

    Article  Google Scholar 

  4. Shokouhimehr M (2015) Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics. Catalysts 5:534–560

    Article  CAS  Google Scholar 

  5. Rossi LM, Costa NJS, Silva FP, Wojcieszak R (2014) Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem 16:2906–2933

    Article  CAS  Google Scholar 

  6. Chen S-W, Zhang Z-C, Zhai N-N, Zhong C-M, Lee S (2015) The effect of silica-coating on catalyst recyclability in ionic magnetic nanoparticle-supported Grubbs–Hoveyda catalysts for ring-closing metathesis. Tetrahedron 71:648–653

    Article  CAS  Google Scholar 

  7. Zhao J, Gui Y, Liu Y, Wang G, Zhang H, Sun Y, Fang S (2017) Highly efficient and magnetically recyclable Pt catalysts for hydrosilylation reactions. Catal Lett 147:1127–1132

    Article  CAS  Google Scholar 

  8. Nasir Baig RB, Varma RS (2014) Magnetic carbon-supported palladium nanoparticles: an efficient and sustainable catalyst for hydrogenation reactions. ACS Sustain Chem Eng 2:2155–2158

    Article  CAS  Google Scholar 

  9. Kainz QM, Reiser O (2014) Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. Acc Chem Res 47:667–677

    Article  CAS  PubMed  Google Scholar 

  10. Li S, Lieberzeit P, Piletsky S, Turner A (2019) Smart polymer catalysts and tunable catalysis. Elsevier, Amsterdam

    Google Scholar 

  11. Liu G, Wang D, Zhou F, Liu W (2015) Electrostatic self-assembly of Au nanoparticles onto thermosensitive magnetic core–shell microgels for thermally tunable and magnetically recyclable catalysis. Small 11(23):2807–2816

    Article  CAS  PubMed  Google Scholar 

  12. Wang D, Duan H, Lü J, Lü C (2017) Fabrication of thermo-responsive polymer functionalized reduced graphene oxide@Fe3O4@Au magnetic nanocomposites for enhanced catalytic applications. J Mater Chem A 5(10):5088–5097

    Article  CAS  Google Scholar 

  13. Pourjavadi A, Tajbakhsh M, Farhang M, Hosseini SH (2015) Copper-loaded polymeric magnetic nanocatalysts as retrievable and robust heterogeneous catalysts for click reactions. New J Chem 39(6):4591–4600

    Article  CAS  Google Scholar 

  14. Yang J, Zhu Y, Fan M, Sun X, Wang WD, Dong Z (2019) Ultrafine palladium nanoparticles confined in core–shell magnetic porous organic polymer nanospheres as highly efficient hydrogenation catalyst. J Colloid Interface Sci 554:157–165

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Zhu Y, Qiao N, Chen Y, Gao L (2017) Preparation and characterization of carbamazepine cocrystal in polymer solution. Pharmaceutics 9:54

    Article  PubMed Central  Google Scholar 

  16. Gill CS, Long W, Jones CW (2009) Magnetic nanoparticle polymer brush catalysts: alternative hybrid organic/inorganic structures to obtain high, local catalyst loadings for use in organic transformations. Catal Lett 131:425–431

    Article  CAS  Google Scholar 

  17. Evangelisti C, Nicoletta P, D’Alessio A, Bertinetti L, Botavina M, Vitulli G (2010) New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): preparation, structural study and catalytic properties. J Catal 272:246–252

    Article  CAS  Google Scholar 

  18. Pandey G, Singh S, Hitkari G (2018) Synthesis and characterization of polyvinyl pyrrolidone (PVP)-coated Fe3O4 nanoparticles by chemical co-precipitation method and removal of Congo red dye by adsorption process. Int Nano Lett 8:111–121

    Article  CAS  Google Scholar 

  19. Zulfiqar AS, Khan R, Zeb T, Rahman MU, Burhanullah AS, Khan G, Rahman ZU, Hussain A (2018) Structural, optical, dielectric and magnetic properties of PVP coated magnetite (Fe3O4) nanoparticles. J Mater Sci Mater Electron 29:20040–20050

    Article  CAS  Google Scholar 

  20. Zharmagambetova AK, Seitkalieva KS, Talgatov ET, Auezkhanova AS, Dzhardimalieva GI, Pomogailo AD (2016) Polymer-modified supported palladium catalysts for the hydrogenation of acetylene compounds. Kinet Catal 57:360–367

    Article  CAS  Google Scholar 

  21. Qiu XY, Meng XS, Mao H, He ZH, Lin YQ, Liu XD, Li DC, Li J (2018) Magnetic nanoparticles prepared by chemically induced transition: structure and magnetization behaviors. Mater Chem Phys 204:328–335

    Article  CAS  Google Scholar 

  22. Woo K, Hong J, Choi S, Lee H-W, Ahn J-P, Kim CS, Lee SW (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16:2814–2818

    Article  CAS  Google Scholar 

  23. Tranchard P, Duquesne S, Samyn F, Estebe B, Bourbigot S (2017) Kinetic analysis of the thermal decomposition of a carbon fibre-reinforced epoxy resin laminate. J Anal Appl Pyrol 126:14–21

    Article  CAS  Google Scholar 

  24. Netto AVG, Santana AM, Mauro AE, Frem RCG, de Almeida ET, Crespi MS, Zorel HE Jr (2005) Thermal decomposition of palladium(II) pyrazolyl complexes; Part II. J Therm Anal Calorim 79:339–342

    Article  CAS  Google Scholar 

  25. Arsalani N, Fattahi H, Nazarpoor M (2010) Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett 4:329–338

    Article  CAS  Google Scholar 

  26. Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim YJ, Lee MH, Kim HJ, Lim G, Choi YS, Park NG, Kim K, Lee WI (2009) Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater 21:3668–3673

    Article  CAS  Google Scholar 

  28. Yang B, Wei Y, Liu Q, Luo Y, Qiu S, Shi Z (2019) Polyvinylpyrrolidone functionalized magnetic graphene-based composites for highly efficient removal of lead from wastewater. Colloids Surf A 582:123927

    Article  CAS  Google Scholar 

  29. Bhatti QA, Baloch MK, Schwarz S, Petzold G (2014) Effect of various parameters on the stability of silica dispersions. J Solut Chem 43:1916–1928

    Article  CAS  Google Scholar 

  30. Belykh LB, Skripov NI, Sterenchuk TP, Gvozdovskaya KL, Sanzhieva SB, Schmidt FK (2019) Pd-P nanoparticles as active catalyst for the hydrogenation of acetylenic compounds. J Nanopart Res 21:198

    Article  Google Scholar 

  31. Guettari M, Belaidi A, Abel S, Tajouri T (2017) Polyvinylpyrrolidone behavior in water/ethanol mixed solvents: comparison of modeling predictions with experimental results. J Solut Chem 46(7):1404–1417

    Article  CAS  Google Scholar 

  32. Sesigur F, Dasdan DS, Yazici O, Cakar F, Cankurtaran O, Karaman F (2016) Thermodynamical characterization of poly (ethylene glycol) and Tosylate functional-ized poly(ethylene glycol) Interaction with some nonpolar and polar solvents via inverse gas chromatography. Optoelectron Adv Mater Rapid Commun 10(1–2):97–101

    CAS  Google Scholar 

  33. Vongsetskul T, Chantarodsakun T, Wongsomboon P, Rangkupan R, Tangboriboonrat P (2015) Effect of solvent and processing parameters on electrospun polyvinylpyrrolidone ultra-fine fibers. Chiang Mai J Sci 42(2):436–442

    CAS  Google Scholar 

  34. Sherrington DC (1998) Preparation, structure and morphology of polymer supports. Chem Commun 21:2275–2286

    Article  Google Scholar 

  35. Wu W, Xiao XH, Zhang SF, Peng TC, Zhou J, Ren F, Jiang CZ (2010) Synthesis and magnetic properties of maghemite (γ-Fe2O3) short-nanotubes. Nanoscale Res Lett 5:1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Talgatov ET, Auyezkhanova AS, Seitkalieva KS, Tumabayev NZ, Akhmetova SN, Zharmagambetova AК (2020) Co-precipitation synthesis of mesoporous maghemite for catalysis application. J Porous Mater 27:919–927

    Article  CAS  Google Scholar 

  37. Gutiérrez L, de la Cueva L, Moros M, Mazario E, de Bernardo S, de la Fuente JM, Morales MP, Salas G (2019) Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology 30:112001

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan (Grants AP05130377, AP05133114). The authors are grateful to G.I. Dzhardimalieva and A.R. Brodskii for assistance.

Funding

This study was funded by Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan (Grants AP05130377, AP05133114).

Author information

Authors and Affiliations

Authors

Contributions

AKZ (Writing—Review & Editing); ETT (Conceptualization, Supervision, Formal analysis, Methodology, Writing- Original draft preparation); ASA (Methodology, Investigation, Data curation); NZT (Investigation, Data curation); FUB (Investigation, Visualization).

Corresponding author

Correspondence to Eldar T. Talgatov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharmagambetova, A.K., Talgatov, E.T., Auyezkhanova, A.S. et al. Effect of polyvinylpyrrolidone on the catalytic properties of Pd/γ-Fe2O3 in phenylacetylene hydrogenation. Reac Kinet Mech Cat 131, 153–166 (2020). https://doi.org/10.1007/s11144-020-01857-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01857-x

Keywords

Navigation