Skip to main content
Log in

Influence of arsenic on light cycle oil hydrodesulfurization over a CoMo catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Samples of a commercial hydrotreating catalyst with different initial arsenic content were used in the study light cycle oil (LCO) feed in a hydrotreating unit operating at high pressure (350 °C, 3 MPa) to evaluate the conversion and selectivity of the catalyst in the presence of arsenic. It was determined that arsenic in the catalyst modifies the textural properties and has the strongest influence on the conversion of the HDS reaction. For the first time, evidence is provided that the arsenic replaces cobalt in CoMoS phase. The incorporation of As is proposed to occur in “edge” sites of the molybdenum sulfide disfavoring the C–S cleavage during the HDS reaction, while hydrogenation sites would be favored.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eijsbouts S (1999) Life cycle of hydroprocessing catalysts and total catalyst management. Stud Surf Sci Catal 127:21–36. https://doi.org/10.1016/s0167-2991(99)80391-7

    Article  CAS  Google Scholar 

  2. Zhang H, Lin H, Zheng Y (2020) Deactivation study of unsupported nano MoS2 catalyst. Carbon Resour Convers 3:60–66. https://doi.org/10.1016/j.crcon.2019.09.003

    Article  CAS  Google Scholar 

  3. Tailleur RG (2019) Hydrogenation and hydrodesulfurization in gas phase of light hydrocarbons from hydrocracking, desulfurization and delayed coking. I catalyst deactivation. Chem Eng Sci 210:115195. https://doi.org/10.1016/j.ces.2019.115195

    Article  CAS  Google Scholar 

  4. Duarte L, Garzón L, Baldovino-Medrano VG (2019) An analysis of the physicochemical properties of spent catalysts from an industrial hydrotreating unit. Catal Today 338:100–107. https://doi.org/10.1016/j.cattod.2019.05.025

    Article  CAS  Google Scholar 

  5. Torres-Mancera P, Ancheyta J, Martínez J (2018) Deactivation of a hydrotreating catalyst in a bench-scale continuous stirred tank reactor at different operating conditions. Fuel 234:326–334. https://doi.org/10.1016/j.fuel.2018.06.122

    Article  CAS  Google Scholar 

  6. Rodríguez E, Félix G, Ancheyta J, Trejo F (2018) Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons. Fuel 225:118–133. https://doi.org/10.1016/j.fuel.2018.02.085

    Article  CAS  Google Scholar 

  7. Zhou J, Zhao J, Zhang J et al (2020) Regeneration of catalysts deactivated by coke deposition: a review. Chin J Catal 41:1048–1061. https://doi.org/10.1016/S1872-2067(20)63552-5

    Article  CAS  Google Scholar 

  8. Ferella F (2020) A review on management and recycling of spent selective catalytic reduction catalysts. J Clean Prod 246:118990. https://doi.org/10.1016/j.jclepro.2019.118990

    Article  CAS  Google Scholar 

  9. Sarrazin P, Cameron CJ, Barthel Y, Morrison ME (1993) Processes prevent detrimental effects from As and Hg in feedstocks. Oil Gas J 91:86

    CAS  Google Scholar 

  10. Opinder Kishan Bhan SOC (2004) United States Patent. US 6759364 B2

  11. Stigter JB, De Haan HPM, Guicherit R et al (2000) Determination of cadmium, zinc, copper, chromium and arsenic in crude oil cargoes. Environ Pollut 107:451–464. https://doi.org/10.1016/S0269-7491(99)00123-2

    Article  CAS  PubMed  Google Scholar 

  12. Maurice V, Ryndin YA, Candy JP et al (2001) Influence of the dispersion of metallic particles on the reaction of triphenylarsine with alumina-supported nickel. J Catal 204:192–199. https://doi.org/10.1006/jcat.2001.3357

    Article  CAS  Google Scholar 

  13. Nielsen B, Villadsen J (1984) Poisoning of nickel catalysts by arsenic. Appl Catal 11:123–138. https://doi.org/10.1016/S0166-9834(00)84046-4

    Article  CAS  Google Scholar 

  14. Rai A, Escalona G, Betancourt P, Sinha AK (2018) Hydroprocessing of light cycle oil (LCO) over sulfided NiMo supported on hierarchical mesoporous H-ZSM-5 catalyst. React Kinet Mech Catal 125:1099–1112. https://doi.org/10.1007/s11144-018-1423-z

    Article  CAS  Google Scholar 

  15. Meng J, Yang J, Fang J et al (2019) Production of liquid fuels from low-temperature coal tar via hydrogenation over CoMo/USY catalysts. React Kinet Mech Catal 127:961–978. https://doi.org/10.1007/s11144-019-01576-y

    Article  CAS  Google Scholar 

  16. Yang S, Adjaye J, McCaffrey WC, Nelson AE (2010) Density-functional theory (DFT) study of arsenic poisoning of NiMoS. J Mol Catal A Chem 321:83–91. https://doi.org/10.1016/j.molcata.2010.02.006

    Article  CAS  Google Scholar 

  17. Merryfield RN, Gardner LE, Parks GD (1984) Arsenic poisoning of hydrodesulfurization catalysts. Am Chem Soc Div Pet Chem Prepr 29:672–680. https://doi.org/10.1021/bk-1985-0288.ch001

    Article  CAS  Google Scholar 

  18. Sie ST (1980) Catalyst deactivation by poisoning and pore plugging in petroleum processing. Elsevier Scientific Publishing Company, Amsterdam

    Book  Google Scholar 

  19. Ryndin YA, Candy JP, Didillon B et al (2001) Surface organometallic chemistry on metals applied to the environment: hydrogenolysis of AsPh3 with nickel supported on alumina. J Catal 198:103–108. https://doi.org/10.1006/jcat.2000.3116

    Article  CAS  Google Scholar 

  20. Puig-Molina A, Nielsen LP, Molenbroek AM, Herbst K (2004) In situ EXAFS study on the chemical state of arsenic deposited on a NiMoP/Al2O3 hydrotreating catalyst. Catal Lett 92:29–34. https://doi.org/10.1023/b:catl.0000011082.20411.92

    Article  CAS  Google Scholar 

  21. Wagner CD, Davis LE, Zeller MV et al (1981) Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal 3:211–225. https://doi.org/10.1002/sia.740030506

    Article  CAS  Google Scholar 

  22. D4294–03 (2003) Standard test method for sulfur in petroleum and petroleum products by energy-dispersive X-ray fluorescence spectrometry. ASTM Int, West Conshohocken, PA

    Google Scholar 

  23. Rana MS, Ramírez J, Gutiérrez-Alejandre A et al (2007) Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent. J Catal 246:100–108. https://doi.org/10.1016/j.jcat.2006.11.025

    Article  CAS  Google Scholar 

  24. Travert A, Dujardin C, Maugé F et al (2006) CO adsorption on CoMo and NiMo sulfide catalysts: a combined IR and DFT study. J Phys Chem B 110:1261–1270. https://doi.org/10.1021/jp0536549

    Article  CAS  PubMed  Google Scholar 

  25. Daage M, Chianelli RR (1994) Structure–function relations in molybdenum sulfide catalysts: the “Rim-Edge” model. J Catal 149:414–427

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Omar Ocanto (PDVSA-Intevep) for performing the XPS measurements, and Ch.E. Yraida Díaz for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Pinto-Castilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, M., Pinto-Castilla, S., Morgado-Vargas, M. et al. Influence of arsenic on light cycle oil hydrodesulfurization over a CoMo catalyst. Reac Kinet Mech Cat 131, 199–211 (2020). https://doi.org/10.1007/s11144-020-01856-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01856-y

Keywords

Navigation