Skip to main content
Log in

Hydrotreating of light cycle oil over CoMo catalysts supported on niobia-alumina or niobia-silica

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

CoMo catalysts supported on niobia-alumina or niobia-silica in different proportions: 0, 5, 0, 15, 20 and 100 wt% Nb2O5 were synthesized. The supports and catalytic precursors were characterized by different physicochemical techniques such as X-ray diffraction (XRD), surface measurements (BET specific area), chemical analysis by EDX and X-ray photoelectron spectroscopy (XPS). The results of characterization showed the presence of niobia in the silica or alumina matrix as its concentration increased. Furthermore, the surface area of supports depended on the niobia concentration and supported CoMo catalysts. These catalysts were tested in the hydrodesulfurization (HDS) reaction of thiophene, hydrogenation (HYD) of cyclohexene and hydrotreating (HDT) of Light Cycle Oil (LCO). The presence of niobia in the supports determined the activity of these catalysts. The niobia-alumina supports were more active than the niobia-silica supports. The hydrotreating of LCO improved the characteristics of the LCO, decreased sulfur content, and also the aromatic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Calemma V, Giardino R, Ferrari M (2010) Fuel Process Technol 91:770–776

    Article  CAS  Google Scholar 

  2. Jin N, Wang G, Yao L, Hu M, Gao J (2016) Ind Eng Chem 55(17):5108–5115

    Article  CAS  Google Scholar 

  3. Rai A, Escalona G, Betancourt P, Sinha A (2018) React Kinet Mech Catal 125(2):1099–1112

    Article  CAS  Google Scholar 

  4. Karakhanov E, Maximov A, Kardasheva Y, Vinnikova M, Kulikov L (2018) Catalysts 8:397

    Article  Google Scholar 

  5. Bouchy M, Denys SP, Dufresne P, Kasztelan S (1993) Ind Eng Chem Res 32:1592–1602

    Article  CAS  Google Scholar 

  6. Betancourt P, Marrero S, Pinto S (2013) Fuel Process Technol 114:21–25

    Article  CAS  Google Scholar 

  7. Đukanović Z, Glišić SB, Čobanin VJ, Nićiforović M, Georgiou CA, Orlović AM (2013) Process Technol 106:160–165

    Article  Google Scholar 

  8. Azizi N, Ali SA, Alhooshani K, Kim T, Lee Y, Park JK, Miyawaki J, Yoon S, Mochida I (2013) Fuel Process Technol 109:172–178

    Article  CAS  Google Scholar 

  9. Wang L, Shen B, Fang F, Wang F, Tian R, Zhang Z, Cui L (2010) Catal Today 158:343–347

    Article  CAS  Google Scholar 

  10. Weissman JW (1996) Catal Today 28:159–166

    Article  CAS  Google Scholar 

  11. Faro AC Jr, AC, dos Santos ACB. (2006) Catal Today 118:402–409

    Article  CAS  Google Scholar 

  12. Rocha AS, Faro AC Jr, Oliviero L, Van Gestel J, Maugé F (2007) J Catal 252:321–334

    Article  CAS  Google Scholar 

  13. Puello-Polo E, Marquez E, Brito JL (2018) J Sol-Gel Sci Tech 88:90–99

    Article  CAS  Google Scholar 

  14. Damyanovaa S, Andonova S, Stereva I, Vladov C, Petrov L, Grang P (2003) React Kinet Catal Lett 79(1):35–42

    Article  Google Scholar 

  15. Santos. B. (2008). Síntese e caracterização de catalisadores VOx/Nb2O5/Al2O3 para a reação de desidrogenação oxidativa de parafinas lineares. https://doi.org/10.11606/D.97.2013.tde-09102013-105536

  16. Tarley C, Ávila T, Segatelli M, Lima G, Dos Santos G, Scheeren C, Dias SLP, Ribeiro ES (2010) J Braz Chem Soc 21(6):1106–1116

    Article  CAS  Google Scholar 

  17. Albert B, Hillebrecht H (2009) Angew Chem Int Ed 48:8640–8668

    Article  CAS  Google Scholar 

  18. Mérida J, Rodríguez E, Jiménez A (1999) J Mol Catal 145:169–181

    Article  Google Scholar 

  19. Carniti P, Gervasini A, Marzo M (2008) J Phys Chem C 112:14064–14074

    Article  CAS  Google Scholar 

  20. Romero A, Ramírez J, Cedeño L (2003) Rev Mex Ing Quim 2:75–81

    CAS  Google Scholar 

  21. Digne M, Marchand K, Bourges P (2007) Oil Gas Sci Technol 62:91–99

    Article  CAS  Google Scholar 

  22. Shafiq I, Shafique S, Akhter P, Yang W, Hussain M (2022) Catalysis Reviews 64(1):1–86

    Article  CAS  Google Scholar 

  23. Chevron Products Company. Diesel fuels technical review (2007). Disponible en http://www.chevron.com/documents/pdf/DieselFuelTechReview.pdf. [Acceso: 15 de Diciembre de 2015].

  24. Vanrysselberghe V, Froment GF (1996) Ind Eng Chem Res 35:3311–3318

    Article  CAS  Google Scholar 

  25. Ancheyta J, Speight JG (eds) (2007). CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos F. Linares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linares, C.F., Bretto, P. Hydrotreating of light cycle oil over CoMo catalysts supported on niobia-alumina or niobia-silica. Reac Kinet Mech Cat 136, 837–849 (2023). https://doi.org/10.1007/s11144-023-02392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02392-1

Keywords

Navigation