Skip to main content
Log in

Direct conversion of cellulose to 5-hydroxymethylfurfural over SnNb2O6–ZrO2 catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, novel SnNb2O6–ZrO2 nanosheet composites were successfully synthesized by hydrothermal method and evaluated for the conversion of cellulose. As a result, the composite samples demonstrate excellent catalytic performance toward cellulose conversion to 5-hydroxymethylfurfural (H6MF), a crucial green platform chemical and excellent intermediate, in a bi-phase system of THF/H2O with the addition of NaCl. The SnNb2O–ZrO2 catalysts with different ZrO2 amounts were characterized by XRD, SEM, TEM, XPS, pyridine-FTIR and Raman to investigate the properties of the samples. The Lewis acid sites and Brønsted acid sites of the samples and the interaction between SnNb2O6 and ZrO2 were also discussed in this work. Since the reaction temperature, reaction time, NaCl amounts and the volume ratio of THF/H2O were altered, the highest conversion of cellulose achieved 85% over SnNb2O6–5% ZrO2 catalyst, with good selectivity (41.8%) and yield (35.5%) of HMF in THF/H2O (volume ratio of 3:1) within 6 h at 180 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Wang L, Xiao F-S (2015) Nanoporous catalysts for biomass conversion. Green Chem 17(1):24–39

    Google Scholar 

  2. Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B 145:1–9

    CAS  Google Scholar 

  3. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558

    CAS  Google Scholar 

  4. Tang J, Sisler J, Grishkewich N, Tam KC (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409

    CAS  PubMed  Google Scholar 

  5. Caliari ÍP, Barbosa MH, Ferreira SO, Teófilo RF (2017) Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods. Carbohyd Polym 158:20–28

    CAS  Google Scholar 

  6. Hu L, Zhao G, Tang X, Wu Z, Xu J, Lin L, Liu S (2013) Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose-derived carbonaceous catalyst in ionic liquid. Biores Technol 148:501–507

    CAS  Google Scholar 

  7. Tang X, Wei J, Ding N, Sun Y, Zeng X, Hu L, Liu S, Lei T, Lin L (2017) Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: key intermediates for sustainable chemicals, materials and fuels. Renew Sustain Energy Rev 77:287–296

    CAS  Google Scholar 

  8. Howard J, Rackemann DW, Bartley JP, Samori C, Doherty WO (2018) Conversion of sugar cane molasses to 5-hydroxymethylfurfural using molasses and bagasse-derived catalysts. ACS Sustain Chem Eng 6(4):4531–4538

    CAS  Google Scholar 

  9. Shirai H, Ikeda S, Qian EW (2017) One-pot production of 5-hydroxymethylfurfural from cellulose using solid acid catalysts. Fuel Process Technol 159:280–286

    CAS  Google Scholar 

  10. Wang T, Pagán-Torres YJ, Combs EJ, Dumesic JA, Shanks BH (2012) Water-compatible Lewis acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural in a biphasic solvent system. Top Catal 55(7–10):657–662

    CAS  Google Scholar 

  11. Yang F, Li Y, Zhang Q, Sun X, Fan H, Xu N, Li G (2015) Selective conversion of cotton cellulose to glucose and 5-hydroxymethyl furfural with SO42-/MxOy solid superacid catalyst. Carbohyd Polym 131:9–14

    CAS  Google Scholar 

  12. Nakajima K, Baba Y, Noma R, Kitano M, Kondo J, Hayashi S, Hara M (2011) Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J Am Chem Soc 133(12):4224–4227

    CAS  PubMed  Google Scholar 

  13. Li X, Peng K, Xia Q, Liu X, Wang Y (2018) Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites. Chem Eng J 332:528–536

    CAS  Google Scholar 

  14. Wang J, Ren J, Liu X, Xi J, Xia Q, Zu Y, Lu G, Wang Y (2012) Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst. Green Chem 14(9):2506–2512

    CAS  Google Scholar 

  15. Hu S, Zhang Z, Song J, Zhou Y, Han B (2009) Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem 11(11):1746–1749

    CAS  Google Scholar 

  16. Seo SW, Noh TH, Park S, Lee CW, Kim SH, Kim HJ, Park HK, Hong KS (2014) Solvothermal synthesis of SnNb2O6 nanoplates and enhanced photocatalytic H2 evolution under visible light. Int J Hydrogen Energy 39(30):17517–17523

    CAS  Google Scholar 

  17. Katayama S, Hayashi H, Kumagai Y, Oba F, Tanaka I (2016) Electronic structure and defect chemistry of tin(II) complex oxide SnNb2O6. J Phys Chem C 120(18):9604–9611

    CAS  Google Scholar 

  18. Saito K, Kudo A (2013) Fabrication of highly crystalline SnNb2O6 shell with a visible-light response on a NaNbO3 nanowire core. Inorg Chem 52(10):5621–5623

    CAS  PubMed  Google Scholar 

  19. Ma X, Ma W, Jiang D, Li D, Meng S, Chen M (2017) Construction of novel WO3/SnNb2O6 hybrid nanosheet heterojunctions as efficient Z-scheme photocatalysts for pollutant degradation. J Colloid Interface Sci 506:93–101

    CAS  PubMed  Google Scholar 

  20. Xun S, Zhang Z, Wang T, Jiang D, Li H (2016) Synthesis of novel metal nanoparitcles/SnNb2O6 nanosheets plasmonic nanocomposite photocatalysts with enhanced visible-light photocatalytic activity and mechanism insight. J Alloy Compd 685:647–655

    CAS  Google Scholar 

  21. Fabičovicová K, Lucas M, Claus P (2015) From microcrystalline cellulose to hard-and softwood-based feedstocks: their hydrogenolysis to polyols over a highly efficient ruthenium-tungsten catalyst. Green Chem 17(5):3075–3083

    Google Scholar 

  22. Li L, Wang W (2003) Synthesis and characterization of monoclinic ZrO2 nanorods by a novel and simple precursor thermal decomposition approach. Solid State Commun 127(9–10):639–643

    CAS  Google Scholar 

  23. Zhang Y, Wang J, Ren J, Liu X, Li X, Xia Y, Lu G, Wang Y (2012) Mesoporous niobium phosphate: an excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water. Catal Sci Technol 2(12):2485–2491

    CAS  Google Scholar 

  24. Osatiashtiani A, Lee AF, Brown DR, Melero JA, Morales G, Wilson K (2014) Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose. Catal Sci Technol 4(2):333–342

    CAS  Google Scholar 

  25. Li X, Xia Q, Peng K, Liu X, Essayem N, Wang Y (2016) High yield production of HMF from carbohydrates over silica–alumina composite catalysts. Catal Sci Technol 6(20):7586–7596

    CAS  Google Scholar 

  26. Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95(3):559–614

    CAS  Google Scholar 

  27. Kim B-K, Hahn J-W, Han KR (1997) Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by Raman spectroscopy. J Mater Sci Lett 16(8):669–671

    CAS  Google Scholar 

  28. Liang S, Zhu S, Chen Y, Wu W, Wang X, Wu L (2012) Rapid template-free synthesis and photocatalytic performance of visible light-activated SnNb2O6 nanosheets. J Mater Chem 22(6):2670–2678

    CAS  Google Scholar 

  29. Paulis M, Martın M, Soria D, Dıaz A, Odriozola J, Montes M (1999) Preparation and characterization of niobium oxide for the catalytic aldol condensation of acetone. Appl Catal A 180(1–2):411–420

    CAS  Google Scholar 

  30. Prasetyoko D, Ramli Z, Endud S, Nur H (2005) Niobic acid dispersed on the surface of TS-1: acidity study. Akta Kimia Indones 1:11–16

    Google Scholar 

  31. Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447(7147):982–985

    PubMed  Google Scholar 

  32. Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782):1933–1937

    PubMed  Google Scholar 

  33. Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) “One-pot” synthesis of 5-(hydroxymethyl) furfural from carbohydrates using tin-beta zeolite. ACS Catal 1(4):408–410

    CAS  Google Scholar 

  34. Román-Leshkov Y, Dumesic JA (2009) Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Top Catal 52(3):297–303

    Google Scholar 

  35. Yamaguchi K, Sakurada T, Ogasawara Y, Mizuno N (2011) Tin-tungsten mixed oxide as efficient heterogeneous catalyst for conversion of saccharides to furan derivatives. Chem Lett 40(5):542–543

    CAS  Google Scholar 

  36. Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9(4):342–350

    CAS  Google Scholar 

  37. Shi N, Liu Q, Zhang Q, Wang T, Ma L (2013) High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system. Green Chem 15(7):1967–1974

    CAS  Google Scholar 

  38. Qi L, Mui YF, Lo SW, Lui MY, Akien GR, InT H (2014) Catalytic conversion of fructose, glucose, and sucrose to 5-(hydroxymethyl) furfural and levulinic and formic acids in γ-valerolactone as a green solvent. ACS Catal 4(5):1470–1477

    CAS  Google Scholar 

  39. Wei W, Wu S (2017) Conversion of eucalyptus cellulose into 5-hydroxymethylfurfural using lewis acid catalyst in biphasic solvent system. Waste Biomass Valoriz 8(4):1303–1311

    CAS  Google Scholar 

  40. Mimura N, Sato O, Shirai M, Yamaguchi A (2017) 5-Hydroxymethylfurfural production from glucose, fructose, cellulose, or cellulose-based waste material by using a calcium phosphate catalyst and water as a green solvent. Chem Sel 2(3):1305–1310

    CAS  Google Scholar 

  41. Li Z, Su K, Ren J, Yang D, Cheng B, Kim CK, Yao X (2018) Direct catalytic conversion of glucose and cellulose. Green Chem 20(4):863–872

    CAS  Google Scholar 

  42. Enomoto K, Hosoya T, Miyafuji H (2018) High-yield production of 5-hydroxymethylfurfural from d-fructose, d-glucose, and cellulose by its in situ removal from the reaction system. Cellulose 25(4):2249–2257

    CAS  Google Scholar 

  43. He J, Liu M, Huang K, Walker TW, Maravelias CT, Dumesic JA, Huber GW (2017) Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent-water mixtures. Green Chem 19(15):3642–3653

    CAS  Google Scholar 

  44. Herbst A, Janiak C (2016) Selective glucose conversion to 5-hydroxymethylfurfural (5-HMF) instead of levulinic acid with MIL-101Cr MOF-derivatives. New J Chem 40(9):7958–7967

    CAS  Google Scholar 

  45. Van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation of Jiangsu Key Laboratory for Biomass Energy and Material (JSBEM202001), National Natural Science Foundation of China (No. 21576050 and No. 51602052), Jiangsu Provincial Natural Science Foundation of China (BK20150604), Fundamental Research Funds for the Central Universities of China (No. 3207045403, 3207045409, 3207046414), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Zhongying Young Scholars of Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiancheng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Huang, M., Chen, L. et al. Direct conversion of cellulose to 5-hydroxymethylfurfural over SnNb2O6–ZrO2 catalyst. Reac Kinet Mech Cat 130, 903–918 (2020). https://doi.org/10.1007/s11144-020-01823-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01823-7

Keywords

Navigation