Skip to main content
Log in

A theoretical investigation on the mechanism and kinetics of the thermal isomerization of Trimethylsilylcyclopropane using CBS-QB3

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of the thermal isomerization of trimethylsilylcyclopropane in the temperature range of 689.5–751.1 K have been theoretically studied using Rice-Ramsperger-Kassel-Marcus (RRKM) theory and transition state theory (TST) in conjugation with CBS-QB3 calculations. Three possible reaction pathways are identified. Among them, the three-membered ring opening and hydrogen atom transfer to the carbon atom bonded to the SiMe3 group and formation of the allyltrimethylsilane is the main reaction. Our calculated kinetic rate constants appear to be in excellent agreement with the available experimental data. The results show that the most abundant product derived from Trimethylsilylcyclopropane will be the (Z)-1-propenyltrimethylsilane under thermodynamic control, while the most favorable process is isomerization reaction of that reactant into the allyltrimethylsilane from a kinetic viewpoint. The regioselectivity of the reaction decreases with decreasing pressures and increasing temperatures. In proportion to greater barrier heights, pressures P > 10−4 bar are in general enough for confirming saturation of the calculated rate coefficients compared with the high-pressure limit of the RRKM rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alberti A, Chatgilialoglu C (1990) Tetrahedron 46:3963

    Article  CAS  Google Scholar 

  2. Chatgilialoglu C (1995) Chem Rev 95:1229

    Article  CAS  Google Scholar 

  3. Postigo A, Kopsov S, Ferreri C, Chatgilialoglu C (2007) Org Lett 9:5159

    Article  CAS  PubMed  Google Scholar 

  4. Chatgilialoglu C, Timokhin VI (2008) Adv Organomet Chem 57:117

    Article  CAS  Google Scholar 

  5. Chatgilialoglu C (2008) Chem Eur J 14:2310

    Article  CAS  PubMed  Google Scholar 

  6. Postigo A, Kopsov S, Zlotsky SS, Ferreri C, Chatgilialoglu C (2009) Organometallics 28:3282

    Article  CAS  Google Scholar 

  7. Chatgilialoglu C, Lalevee J (2012) Molecules 17:527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brook MA, Gottardo C, Balduzzi S, Mohamed M (1997) Tetrahedron Lett 38:6997

    Article  CAS  Google Scholar 

  9. Scheschkewitz D (2014) Functional molecular silicon compounds I: Regular oxidation states, vol 155. Springer, Heidelberg

    Book  Google Scholar 

  10. Marschner C (2014) Struct Bond 155:163

    Article  CAS  Google Scholar 

  11. Grant RCS, Swinbourne ES (1966) Chem Commun 620

  12. Fields R, Haszeldine RN, Peter D (1967) Chem Commun 1081

  13. Parry KAW, Robinson PJ (1967) Chem Comm 1083

  14. Breslow R (1963) Molecular rearrangements, Part I, P. de Mayo ed., Interscience, New York and London

  15. Walsh R (1981) Acc Chem Res 14:246

    Article  CAS  Google Scholar 

  16. Sakurai H, Hosomi A, Kumada M (1968) Tetrahedron Lett 20:2469

    Article  Google Scholar 

  17. Weber WP (1983) Silicon reagents in organic synthesis. Springer, Berlin

    Book  Google Scholar 

  18. Paquette LA (1981) Isr J Chem 21:128

    Article  CAS  Google Scholar 

  19. Oberhammer H, Boggs JA (1979) J Mol Struct 57:176

    Article  Google Scholar 

  20. Typke V (1979) J Mol Spectrosc 77:117

    Article  CAS  Google Scholar 

  21. Grignon-Dubois M, Marchard A, Dunogues J, Barbe B, Petraud M (1984) J Organomet Chem 272:19

    Article  CAS  Google Scholar 

  22. Conlin RT, Kwak Y-W (1986) Organometallics 5:1205

    Article  CAS  Google Scholar 

  23. Chesick JP (1960) J Am Chem Soc 82:3277

    Article  CAS  Google Scholar 

  24. Setser DW, Rabinovitch BS (1964) J Am Chem Soc 86:664

    Article  Google Scholar 

  25. Krusic PJ, Kochi JK (1971) J Am Chem Soc 93:846

    Article  CAS  Google Scholar 

  26. Kira M, Sakurai H (1977) J Am Chem Soc 99:3892

    Article  CAS  Google Scholar 

  27. Kira M, Sugiyama H, Sakurai H (1983) J Am Chem Soc 105:6436

    Article  CAS  Google Scholar 

  28. Kira M, Akiyami M, Sakurai H (1984) J Organomet Chem 271:23

    Article  CAS  Google Scholar 

  29. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Article  CAS  Google Scholar 

  30. Montgomery JA, Ochterski JW, Petersson GA (1994) J Chem Phys 101:5900

    Article  CAS  Google Scholar 

  31. Ochterski JW, Petersson GA, Montgomery JA (1996) J Chem Phys 104:2598

    Article  CAS  Google Scholar 

  32. Nyden MR, Petersson GA (1981) J Chem Phys 75:1843

    Article  CAS  Google Scholar 

  33. Petersson GA, Bennett A, Tensfeld TG, Al-Laham MA, Shirley W, Matzaris J (1988) J Chem Phys 89:2193

    Article  CAS  Google Scholar 

  34. Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081

    Article  CAS  Google Scholar 

  35. Petersson GA, Yee AK, Bennett A (1983) J Chem Phys 83:5105

    Article  Google Scholar 

  36. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532

    Article  CAS  Google Scholar 

  37. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513

    Article  CAS  Google Scholar 

  38. Stanton JF (1997) Chem Phys Lett 281:130

    Article  CAS  Google Scholar 

  39. Szabo A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. McGraw-Hill, New York

    Google Scholar 

  40. Eyring H (1935) J Chem Phys 3:107

    Article  CAS  Google Scholar 

  41. Johnston HS (1966) Gas phase reaction rate theory. Roland Press, New York

    Google Scholar 

  42. Laidler KJ (1969) Theories of chemical reaction rates. McGraw-Hill, New York

    Google Scholar 

  43. Weston RE, Schwartz HA (1972) Chemical kinetics. Prentice-Hall, New York

    Google Scholar 

  44. Rapp D (1972) Statistical mechanics. Holt, Rinehart, and Winston, New York

  45. Nikitin EE (1974) Theory of elementary atomic and molecular processes in gases. Clarendon Press, Oxford

    Google Scholar 

  46. Smith IWM (1980) Kinetics and dynamics of elementary gas reactions. Butterworths, London

    Google Scholar 

  47. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  48. Robinson PJ, Holbrook KA (1972) Unimolecular reactions. Wiley, New York

    Google Scholar 

  49. Steinfeld JI, Francisco JS, Hase WL (1999) Chemical kinetics and dynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  50. Eyring H, Lin SH, Lin SM (1980) Basic chemical kinetics. Wiley, New York

    Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc., Wallingford

  52. R. Dennington, R, Keith, T, Millam, J (2005) GaussView, Version 5.0, Semichem Inc., Shawnee

  53. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  54. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650

    Article  CAS  Google Scholar 

  55. Halls MD, Velkovski J, Schlegel HB (2001) Theor Chem Acc 105:413

    Article  CAS  Google Scholar 

  56. Senosiain JP, Klippenstein SJ, Miller JA (2005) J Phys Chem A 109:6045

    Article  CAS  PubMed  Google Scholar 

  57. Greenwald EE, North SW, Georgievskii Y, Klippenstein SJ (2005) J Phys Chem A 109:6031

    Article  CAS  PubMed  Google Scholar 

  58. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  59. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  60. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  61. Jasiński R (2014) Comp Theor Chem 1046:93

    Article  CAS  Google Scholar 

  62. Jasiński R (2014) J Fluor Chem 160:29

    Article  CAS  Google Scholar 

  63. Shiroudi A, Zahedi E (2016) RSC Adv 6:91882

    Article  CAS  Google Scholar 

  64. Shiroudi A, Deleuze MS (2014) J Phys Chem A 118:3625

    Article  CAS  PubMed  Google Scholar 

  65. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  66. McQuarrie DA (1976) Statistical mechanics. Harper and Row, New York

    Google Scholar 

  67. Herzberg GH (1945) Molecular spectra and molecular structure II. Infrared and raman spectra of polyatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  68. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  69. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  70. Bartlett RJ (1989) J Phys Chem 93:1697

    Article  CAS  Google Scholar 

  71. Chang R (2005) Physical chemistry for the biosciences. University Science Books, Sausalito

    Google Scholar 

  72. Moore JW, Pearson RG (1981) Kinetics and mechanism—the study of homogeneous chemical reactions, 3rd edn. Wiley, New York

    Google Scholar 

  73. Carstensen HH, Dean AM, Deutschmann O (2007) Proc Combust Inst 31:149

    Article  CAS  Google Scholar 

  74. Shiroudi A, Deleuze MS, Canneaux S (2014) J Phys Chem A 118:4593

    Article  CAS  PubMed  Google Scholar 

  75. Shiroudi A, Deleuze MS (2015) Comput Theor Chem 1074:26

    Article  CAS  Google Scholar 

  76. Oliaey AR, Shiroudi A, Zahedi E, Deleuze MS (2018) React Kinet Mech Cat 124:27

    Article  CAS  Google Scholar 

  77. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  78. Johnson HS, Heicklen J (1962) J Phys Chem 66:532

    Article  Google Scholar 

  79. Wigner E (1937) J Chem Phys 5:720

    Article  CAS  Google Scholar 

  80. Wigner E (1932) Z Phys Chem B 19:203

    Google Scholar 

  81. Canneaux S, Bohr F, Henon E (2014) J Comput Chem 35:82

    Article  CAS  PubMed  Google Scholar 

  82. Gilbert RG, Smith SC (1990) Theory of Unimolecular and Recombination Reactions. Blackwell Scientific Publications, Boston

    Google Scholar 

  83. Shiroudi A, Deleuze MS (2015) J Mol Model 21:301

    Article  PubMed  CAS  Google Scholar 

  84. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard References Database Number 101, section XIII.B.4a: Precomputed vibrational scaling factors, Johnson III RD, Ed. (https://cccbdb.nist.gov/vibscalejust.asp))

  85. Mourits FM, Rummens HA (1977) Can J Chem 55:3007

    Article  CAS  Google Scholar 

  86. Kee RJ, Rupley FM, Miller JA, Coltrin ME, Grcar JF, Meeks E, Moffat HK, Lutz AE, Dixon-Lewis G, Smooke MD, Warnatz J, Evans GH, Larson RS, Mitchell RE, Petzold LR, Reynolds WC, Caracotsios M, Stewart WE, Glarborg P, Wang C, McLellan CL, Adigun O, Houf WG, Chou CP, Miller SF, Ho P, Young PD, Young DJ, Hodgson DW, Petrova MV, Puduppakkam KV (2010) CHEMKIN. Reaction Design Inc., San Diego

    Google Scholar 

  87. Rawadieh S, Altarawneh I, Alateyat HB, Altarawneh M (2013) Comput Theor Chem 1018:45

    Article  CAS  Google Scholar 

  88. Hammond GS (1953) J Am Chem Soc 77:334

    Article  Google Scholar 

  89. Agmon N, Levine RD (1977) Chem Phys Lett 52:197

    Article  CAS  Google Scholar 

  90. Gowenlock BG (1960) Quart Rev Chem Soc 14:133

    Article  CAS  Google Scholar 

  91. Safaei Z, Shiroudi A, Padash R, Sillanpää M, Zahedi E (2018) J Fluorine Chem 216:71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Oliaey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliaey, A.R., Shiroudi, A. A theoretical investigation on the mechanism and kinetics of the thermal isomerization of Trimethylsilylcyclopropane using CBS-QB3. Reac Kinet Mech Cat 130, 55–74 (2020). https://doi.org/10.1007/s11144-020-01775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01775-y

Keywords

Navigation