Skip to main content
Log in

Facile synthesis of mesoporous graphitic carbon nitride/SnO2 nanocomposite photocatalysts for the enhanced photodegradation of Rhodamine B

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In order to enhance the photocatalytic performance of carbon nitride, mesoporous graphitic carbon nitride (mpg-C3N4) nanocomposite photocatalyst (mpg-C3N4/SnO2) with high photocatalytic activity was synthesized by in situ growth method in this paper. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis diffuse reflectance spectra (DRS). Also, the photocatalytic properties of mpg-C3N4/SnO2 nanocomposite were studied by photocatalytic degradation of Rhodamine B (RhB) solution under visible light irradiation. After 120 min of visible light irradiation, the photocatalytic activity of the synthesized mpg-C3N4/SnO2 nanocomposite increased significantly, the degradation effect of the mpg-C3N4/SnO2 composite sample can reach up to 93%, and higher than that of pure mpg-C3N4 and SnO2. The mesoporous structure of mpg-C3N4/SnO2 nanocomposite could enlarge the contact area with dye and increase light absorption, and the presence of heterojunction on the interface between mpg-C3N4 and SnO2 further enhanced the separation efficiency of photogenerated electron hole pairs, sequentially improves the photocatalytic performance of the mpg-C3N4/SnO2 nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Le S, Jiang T, Li Y, Zhao Q, Li Y, Fang W, Gong M (2017) Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl Catal B 200:601–610

    CAS  Google Scholar 

  2. Li B, Wang Y, Zeng Y, Wang R (2016) Synthesis of CuO micro-sphere combined with g-C3N4 using Cu2O as precursor for enhanced photocatalytic hydrogen evolution. Mater Lett 178:308–311

    CAS  Google Scholar 

  3. Zhuang Z, Li Y, Li Z, Lv F, Lang Z, Zhao K, Zhou L, Moskaleva L, Guo S, Mai L (2018) MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution. Angew Chem Int Ed Engl 57:496–500

    CAS  PubMed  Google Scholar 

  4. Ren C, Qiu W, Zhang H, He Z, Chen Y (2015) Degradation of benzene on TiO2/SiO2/Bi2O3 photocatalysts under UV and visible light. J Mol Catal A 398:215–222

    CAS  Google Scholar 

  5. Zhou L, Wang L, Lei J, Liu Y, Zhang J (2017) Fabrication of TiO2/Co-g-C3N4 heterojunction catalyst and its photocatalytic performance. Catal Commun 89:125–128

    CAS  Google Scholar 

  6. Tan Y, Shu Z, Zhou J, Li T, Wang W, Zhao Z (2018) One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl Catal B 230:260–268

    CAS  Google Scholar 

  7. Xie Z, Feng Y, Wang F, Chen D, Zhang Q, Zeng Y, Lv W, Liu G (2018) Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl Catal B 229:96–104

    CAS  Google Scholar 

  8. Kumar A, Kumar A, Sharma G, Ala'a H, Naushad M, Ghfar AA, Stadler FJ (2018) Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem Eng J 334:462–478

    CAS  Google Scholar 

  9. Niu P, Zhang L, Liu G, Cheng H-M (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Func Mater 22:4763–4770

    CAS  Google Scholar 

  10. Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Abedi M (2018) Decoration of carbon dots and AgCl over g-C3N4 nanosheets: novel photocatalysts with substantially improved activity under visible light. Sep Purif Technol 199:64–77

    CAS  Google Scholar 

  11. Wei H, Zhang Q, Zhang Y, Yang Z, Zhu A, Dionysiou DD (2016) Enhancement of the Cr(VI) adsorption and photocatalytic reduction activity of g-C3N4 by hydrothermal treatment in HNO3 aqueous solution. Appl Catal A 521:9–18

    CAS  Google Scholar 

  12. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    CAS  PubMed  Google Scholar 

  13. Ye Y, Yang H, Wang X, Feng W (2018) Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4 /LaFeO3 heterojunction photocatalysts. Mater Sci Semicond Process 82:14–24

    CAS  Google Scholar 

  14. Ma Y, Li J, Liu E, Wan J, Hu X, Fan J (2017) High efficiency for H2 evolution and NO removal over the Ag nanoparticles bridged g-C3N4 and WS2 heterojunction photocatalysts. Appl Catal B 219:467–478

    CAS  Google Scholar 

  15. Huang D, Li Z, Zeng G, Zhou C, Xue W, Gong X, Yan X, Chen S, Wang W, Cheng M (2019) Megamerger in photocatalytic field: 2D g-C3N4nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance. Appl Catal B 240:153–173

    CAS  Google Scholar 

  16. Wang Y, Liu X, Liu J, Han B, Hu X, Yang F, Xu Z, Li Y, Jia S, Li Z, Zhao Y (2018) Carbon quantum dot implanted graphite carbon nitride nanotubes: excellent charge separation and enhanced photocatalytic hydrogen evolution. Angew Chem Int Ed Engl 57:5765–5771

    CAS  PubMed  Google Scholar 

  17. Sudrajat H, Hartuti S (2018) Structural properties and catalytic activity of a novel ternary CuO/gC3N4/Bi2O3 photocatalyst. J Colloid Interface Sci 524:227–235

    CAS  PubMed  Google Scholar 

  18. Wang YZ, Hao N, Feng QM, Shi HW, Xu JJ, Chen HY (2016) A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and Ag-PAMAM-luminol nanocomposites. Biosens Bioelectron 77:76–82

    PubMed  Google Scholar 

  19. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    CAS  Google Scholar 

  20. Zhang C, Li Y, Shuai D, Shen Y, Xiong W, Wang L (2019) Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: a review. Chemosphere 214:462–479

    CAS  PubMed  Google Scholar 

  21. Luo J, Dong G, Zhu Y, Yang Z, Wang C (2017) Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4. Appl Catal B 214:46–56

    CAS  Google Scholar 

  22. Hong Y, Meng Y, Zhang G, Yin B, Zhao Y, Shi W, Li C (2016) Facile fabrication of stable metal-free CQDs/g-C3N4 heterojunctions with efficiently enhanced visible-light photocatalytic activity. Sep Purif Technol 171:229–237

    CAS  Google Scholar 

  23. Duan Y (2018) Facile preparation of CuO/g-C3N4 with enhanced photocatalytic degradation of salicylic acid. Mater Res Bull 105:68–74

    CAS  Google Scholar 

  24. Xue M, Tan G, Liu T, Lv L, Li B, Zhang D, Dang M, Ren H, Xia A (2019) Insights into the improved photocatalytic performance of fluorine surface modified mpg-C3N4 at room temperature under aqueous conditions. Applied Catalysis A 578:89–97

    CAS  Google Scholar 

  25. Zhang S, Hu C, Ji H, Zhang L, Li F (2019) Facile synthesis of nitrogen-deficient mesoporous graphitic carbon nitride for highly efficient photocatalytic performance. Appl Surf Sci 478:304–312

    CAS  Google Scholar 

  26. Tan G, She L, Liu T, Xu C, Ren H, Xia A (2017) Ultrasonic chemical synthesis of hybrid mpg-C3N4/BiPO4 heterostructured photocatalysts with improved visible light photocatalytic activity. Appl Catal B 207:120–133

    CAS  Google Scholar 

  27. Yu S, Wang Y, Sun F, Wang R, Zhou Y (2018) Novel mpg-C3N4/TiO2 nanocomposite photocatalytic membrane reactor for sulfamethoxazole photodegradation. Chem Eng J 337:183–192

    CAS  Google Scholar 

  28. Chen D, Wang K, Xiang D, Zong R, Yao W, Zhu Y (2014) Significantly enhancement of photocatalytic performances via core–shell structure of ZnO@mpg-C3N4. Appl Catal B 147:554–561

    CAS  Google Scholar 

  29. Yang Y, Yang X-A, Leng D, Wang S-B, Zhang W-B (2018) Fabrication of g-C3N4/SnS2/SnO2 nanocomposites for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Chem Eng J 335:491–500

    CAS  Google Scholar 

  30. Yang L, Huang J, Shi L, Cao L, Liu H, Liu Y, Li Y, Song H, Jie Y, Ye J (2018) Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation. Appl Catal B 221:670–680

    CAS  Google Scholar 

  31. Singh J, Kumari P, Basu S (2019) Degradation of toxic industrial dyes using SnO2/g-C3N4 nanocomposites: role of mass ratio on photocatalytic activity. J Photochem Photobiol A 371:136–143

    CAS  Google Scholar 

  32. Chen Y, Li W, Jiang D, Men K, Li Z, Li L, Sun S, Li J, Huang Z-H, Wang L-N (2019) Facile synthesis of bimodal macroporous g-C3N4/SnO2 nanohybrids with enhanced photocatalytic activity. Sci Bull 64:44–53

    CAS  Google Scholar 

  33. Praus P, Svoboda L, Dvorský R, Reli M (2018) Nanocomposites of SnO2 and g-C3N4: Preparation, characterization and photocatalysis under visible LED irradiation. Ceram Int 44:3837–3846

    CAS  Google Scholar 

  34. Seza A, Soleimani F, Naseri N, Soltaninejad M, Montazeri SM, Sadrnezhaad SK, Mohammadi MR, Moghadam HA, Forouzandeh M, Amin MH (2018) Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting. Appl Surf Sci 440:153–161

    CAS  Google Scholar 

  35. Babu B, Cho M, Byon C, Shim J (2018) Sunlight-driven photocatalytic activity of SnO2 QDs-g-C3N4 nanolayers. Mater Lett 212:327–331

    CAS  Google Scholar 

  36. Zang Y, Li L, Li X, Lin R, Li G (2014) Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem Eng J 246:277–286

    CAS  Google Scholar 

  37. Wang X, Ren P (2018) Flower-like SnO2/g-C3N4 heterojunctions: the face-to-face contact interface and improved photocatalytic properties. Adv Powder Technol 29:1153–1157

    CAS  Google Scholar 

  38. Shen H, Zhao X, Duan L, Liu R, Li H (2017) Enhanced visible light photocatalytic activity in SnO2 @g-C3N4 core-shell structures. Mater Sci Eng B 218:23–30

    CAS  Google Scholar 

  39. Wang Y, Tan G, Liu T, Su Y, Ren H, Zhang X, Xia A, Lv L, Liu Y (2018) Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-scheme photocatalysts induced by BiVO4 surface heterojunction. Appl Catal B 234:37–49

    CAS  Google Scholar 

  40. Zheng L-L, Xiao X-Y, Li Y, Zhang W-P (2017) Enhanced photocatalytic activity of TiO2 nanoparticles using WS2/g-C3N4 hybrid as co-catalyst. Trans Nonferrous Met Soc China 27:1117–1126

    CAS  Google Scholar 

  41. Liu Q, Chen T, Guo Y, Zhang Z, Fang X (2016) Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl Catal B 193:248–258

    CAS  Google Scholar 

  42. Zou W, Deng B, Hu X, Zhou Y, Pu Y, Yu S, Ma K, Sun J, Wan H, Dong L (2018) Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution. Appl Catal B 238:111–118

    CAS  Google Scholar 

  43. Mo Z, Xu H, Chen Z, She X, Song Y, Lian J, Zhu X, Yan P, Lei Y, Yuan S, Li H (2019) Construction of MnO2/monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting. Appl Catal B 241:452–460

    CAS  Google Scholar 

  44. Wang B, Cai H, Zhao D, Song M, Guo P, Shen S, Li D, Yang S (2019) Enhanced photocatalytic hydrogen evolution by partially replaced corner-site C atom with P in g-C3N4. Appl Catal B 244:486–493

    Google Scholar 

  45. Li C, Yu S, Dong H, Liu C, Wu H, Che H, Chen G (2018) Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight. Appl Catal B 238:284–293

    CAS  Google Scholar 

  46. Jiang L, Yuan X, Zeng G, Liang J, Chen X, Yu H, Wang H, Wu Z, Zhang J, Xiong T (2018) In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl Catal B 227:376–385

    CAS  Google Scholar 

  47. Jiang G, Geng K, Wu Y, Han Y, Shen X (2018) High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation. Appl Catal B 227:366–375

    CAS  Google Scholar 

  48. Xu D, Cheng B, Wang W, Jiang C, Yu J (2018) Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B 231:368–380

    CAS  Google Scholar 

  49. Lu Z, Li C, Han J, Wang L, Wang S, Ni L, Wang Y (2018) Construction 0D/2D heterojunction by highly dispersed Ni2 PQDs loaded on the ultrathin g-C3N4 surface towards superhigh photocatalytic and photoelectric performance. Appl Catal B 237:919–926

    CAS  Google Scholar 

  50. Tang J-Y, Guo R-T, Zhou W-G, Huang C-Y, Pan W-G (2018) Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl Catal B 237:802–810

    CAS  Google Scholar 

  51. Gong Y, Quan X, Yu H, Chen S, Zhao H (2018) Enhanced photocatalytic performance of a two-dimensional BiOIO3/g-C3N4 heterostructured composite with a Z-scheme configuration. Appl Catal B 237:947–956

    CAS  Google Scholar 

  52. Gábor L (2015) Deterministic kinetics in chemistry and systems biology the dynamics of complex reaction networks. Springer, pp 2191–5407

  53. Liu Q, Chen T, Guo Y, Zhang Z, Fang X (2017) Grafting Fe(III) species on carbon nanodots/Fe-doped g-C3N4 via interfacial charge transfer effect for highly improved photocatalytic performance. Appl Catal B 205:173–181

    CAS  Google Scholar 

  54. Hu M, Xing Z, Cao Y, Li Z, Yan X, Xiu Z, Zhao T, Yang S, Zhou W (2018) Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts. Appl Catal B 226:499–508

    CAS  Google Scholar 

  55. Peng F, Ni Y, Zhou Q, Kou J, Lu C, Xu Z (2018) New g-C3N4 based photocatalytic cement with enhanced visible-light photocatalytic activity by constructing muscovite sheet/SnO2 structures. Constr Build Mater 179:315–325

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to financial support from National Natural Science Foundation of China (51572115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingshun Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Zhao, Q., Yang, C. et al. Facile synthesis of mesoporous graphitic carbon nitride/SnO2 nanocomposite photocatalysts for the enhanced photodegradation of Rhodamine B. Reac Kinet Mech Cat 129, 535–550 (2020). https://doi.org/10.1007/s11144-019-01712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01712-8

Keywords

Navigation