Skip to main content
Log in

Microkinetic simulation and fitting of the temperature programmed reaction of methanol on CeO2(111): H2 and H2O + V production

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics and mechanism for temperature programmed reaction following adsorption of an adsorbate can be better understood by simulation and fitting with comparison to experiment. A case study is presented here for the chemistry of adsorption of methanol on a CeO2(111) surface followed by heating. The gas products observed are CH3OH, CH2O, H2, H2O, CO, CO2. At low temperatures (< 500 K), there is formation of H2 and H2O, where the H2O formation is accompanied by lattice oxygen vacancy (V) formation and is thus important in determining the selectivity towards different products. Microkinetic modeling was performed using a recently published method for fitting to gain mechanistic knowledge of the H2 and H2O + V formation at < 500 K. In the kinetic models used here, most of the H2 and H2O + V formation can be explained by a mechanism in which a metastable state of hydrogen on the surface (H*) acts as an intermediate. Two possibilities were investigated for the source of the metastable H* intermediate: H* from CH bond breaking of methoxies, or promotion of H+ to H* via electron transfer from ionic methoxies absorbed in oxygen vacancies (CH3O/V). From this study, we consider the latter to be more likely at < 500 K. For the H2O formation, it was found to be critical that H2O cannot dissociate directly on oxygen vacancies. Catalytic chemistry was observed in simulations, including catalytic formation of oxygen vacancies. Various features of the experimental results were reproduced, including methoxies being the major carbon containing species on the surface at < 500 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. An alternative to the electron transfer mechanism is a mechanism which involves CH3O- and H+ exchanging site positions (the mechanism for doing so would actually involve CH3* exchanging positions with H*) [28]. The site exchange idea has recently been discussed by Mullins [25]. We have not considered the site exchange mechanism, as there is no transition state or activation energy available for this mechanism in the literature, but it would play a role similar to that of our electron transfer mechanism.

  2. To reproduce the experimental behaviour observed, the binding strength of ionic methoxies outside of vacancies was required to be stronger than the DFT values calculated by Mei et al. [33] by 20 or 30 kJ/mol, which is in line with the stronger binding strengths calculated by Beste et al. [31] and also consistent with the results of Kropp et al. [34].

References

  1. Burcham LJ, Briand LE, Wachs IE (2001) Quantification of active sites for the determination of methanol oxidation turn-over frequencies using methanol chemisorption and in situ infrared techniques. 1. Supported metal oxide catalysts. Langmuir 17(20):6164–6174. https://doi.org/10.1021/la010009u

    Article  CAS  Google Scholar 

  2. Burcham LJ, Briand LE, Wachs IE (2001) Quantification of active sites for the determination of methanol oxidation turn-over frequencies using methanol chemisorption and in situ infrared techniques. 2. Bulk metal oxide catalysts. Langmuir 17(20):6175–6184. https://doi.org/10.1021/la010010t

    Article  CAS  Google Scholar 

  3. Collins SE, Briand LE, Gambaro LA, Baltanás MA, Bonivardi AL (2008) Adsorption and decomposition of methanol on gallium oxide polymorphs. J Phys Chem C 112(38):14988–15000. https://doi.org/10.1021/jp801252d

    Article  CAS  Google Scholar 

  4. Albrecht PM, Mullins DR (2013) Adsorption and reaction of methanol over CeOx(100) thin films. Langmuir 29(14):4559–4567. https://doi.org/10.1021/la400295f

    Article  CAS  PubMed  Google Scholar 

  5. Mullins DR, Robbins MD, Zhou J (2006) Adsorption and reaction of methanol on thin-film cerium oxide. Surf Sci 600(7):1547–1558

    CAS  Google Scholar 

  6. Kim KS, Barteau MA, Farneth WE (1988) Adsorption and decomposition of aliphatic-alcohols on TiO2. Langmuir 4(3):533–543

    CAS  Google Scholar 

  7. Savara A (2016) Simulation and fitting of complex reaction network TPR: the key is the objective function. Surf Sci 653:169. https://doi.org/10.1016/j.susc.2016.07.001

    Article  CAS  Google Scholar 

  8. Matera S, Schneider WF, Heyden A, Savara A (2019) Progress in accurate chemical kinetic modeling, simulations, and parameter estimation for heterogeneous catalysis. ACS Catal 9(8):6624–6647. https://doi.org/10.1021/acscatal.9b01234

    Article  CAS  Google Scholar 

  9. Paletsky AA, Budachev NV, Korobeinichev OP (2009) Mechanism and kinetics of the thermal decomposition of 5-aminotetrazole. Kinet Catal 50(5):627. https://doi.org/10.1134/S0023158409050036

    Article  CAS  Google Scholar 

  10. Khajonvittayakul C, Tongnan V, Kangsadan T, Laosiripojana N, Jindasuwan S, Hartley UW (2019) Thermodynamic and mechanism study of syngas production via integration of nitrous oxide decomposition and methane partial oxidation in the presence of 10%NiO–La0.3Sr0.7Co0.7Fe0.3O3–δ. Reac Kinet Mech Cat 127(2):839–855. https://doi.org/10.1007/s11144-019-01600-1

    Article  CAS  Google Scholar 

  11. Yang M, Papp H, Guo H (2010) Study on methane conversion to synthesis gas over nano Pt/MgO catalysts. Reac Kinet Mech Cat 101(1):93–104. https://doi.org/10.1007/s11144-010-0200-4

    Article  CAS  Google Scholar 

  12. Popa A, Sasca V, Verdes O, Holclajtner-Antunović I (2015) Adsorption–desorption and catalytic properties of SBA-15 supported cesium salts of 12-molybdophosphoric acid for the dehydration of ethanol. Reac Kinet Mech Cat 115(1):355–375. https://doi.org/10.1007/s11144-015-0832-5

    Article  CAS  Google Scholar 

  13. José C, Briand LE (2010) Deactivation of Novozym® 435 during the esterification of ibuprofen with ethanol: evidences of the detrimental effect of the alcohol. Reac Kinet Mech Cat 99(1):17–22. https://doi.org/10.1007/s11144-009-0103-4

    Article  CAS  Google Scholar 

  14. Curia V, Sambeth J, Gambaro L (2012) Catalytic and physicochemical characterization of the MnVOx system. Influence of vanadium on methanol oxidation. Reac Kinet Mech Cat 106(1):165–176. https://doi.org/10.1007/s11144-012-0422-8

    Article  CAS  Google Scholar 

  15. Merza G, László B, Oszkó A, Baán K, Erdőhelyi A (2016) The decomposition of dimethyl carbonate over carbon supported Cu catalysts. Reac Kinet Mech Cat 117(2):623–638. https://doi.org/10.1007/s11144-015-0973-6

    Article  CAS  Google Scholar 

  16. Savara A, Li M-J, Sachtler WMH, Weitz E (2008) Catalytic reduction of NH4NO3 by NO: effects of solid acids and implications for low temperature DeNOx processes. Appl Catal B 81(3):251–257. https://doi.org/10.1016/j.apcatb.2007.12.008

    Article  CAS  Google Scholar 

  17. Savara A, Weitz E (2010) Kinetics of NO + H+ + NO3− → NO2 + HNO2 on BaNa–Y: evidence for a diffusion-limited A + B → 0 reaction on a surface. J Phys Chem C 114(48):20621–20628. https://doi.org/10.1021/jp105110b

    Article  CAS  Google Scholar 

  18. Savara A, Sutton JE (2018) SQERT-T: alleviating kinetic Monte Carlo (KMC)-stiffness in transient KMC simulations. J Phys: Condens Matter 30(29):295901. https://doi.org/10.1088/1361-648x/aacb6d

    Article  CAS  Google Scholar 

  19. Savara A, Danon A, Sachtler WMH, Weitz E (2009) TPD of nitric acid from BaNa-Y: evidence that a nanoscale environment can alter a reaction mechanism. Phys Chem Chem Phys 11(8):1180–1188. https://doi.org/10.1039/b815605k

    Article  CAS  PubMed  Google Scholar 

  20. Zhao C, Watt C, Kent PR, Overbury SH, Mullins DR, Calaza FC, Savara A, Xu Y (2019) Coupling of acetaldehyde to crotonaldehyde on CeO2–x(111): bifunctional mechanism and role of oxygen vacancies. J Phys Chem C 123(13):8273–8286. https://doi.org/10.1021/acs.jpcc.8b08535

    Article  CAS  Google Scholar 

  21. Dyusembaeva AA, Vershinin VI (2019) Modeling of catalytic reforming: effect of kinetic parameters on the expected composition of products. Kinet Catal 60(1):106–111. https://doi.org/10.1134/s002315841901004x

    Article  CAS  Google Scholar 

  22. Kendell S, Brown T (2010) Detailed product and kinetic analysis for the low-pressure selective oxidation of isobutane over phosphomolybdic acid. Reac Kinet Mech Cat 99(2):251–268. https://doi.org/10.1007/s11144-010-0156-4

    Article  CAS  Google Scholar 

  23. Sutton JE, Danielson T, Beste A, Savara A (2017) Below-room-temperature C-H bond breaking on an inexpensive metal oxide: methanol to formaldehyde on CeO2(111). J Phys Chem Lett 8(23):5810–5814. https://doi.org/10.1021/acs.jpclett.7b02683

    Article  CAS  PubMed  Google Scholar 

  24. Mullins DR, Albrecht PM, Calaza F (2013) Variations in reactivity on different crystallographic orientations of cerium oxide. Top Catal 56(15–17):1345–1362. https://doi.org/10.1007/s11244-013-0146-7

    Article  CAS  Google Scholar 

  25. Mullins DR (2015) The surface chemistry of cerium oxide. Surf Sci Rep 70:42–85. https://doi.org/10.1016/j.surfrep.2014.11.001

    Article  CAS  Google Scholar 

  26. Abbott HL, Uhl A, Baron M, Lei Y, Meyer RJ, Stacchiola DJ, Bondarchuk O, Shaikhutdinov S, Freund HJ (2010) Relating methanol oxidation to the structure of ceria-supported vanadia monolayer catalysts. J Catal 272(1):82–91

    CAS  Google Scholar 

  27. Ferrizz RM, Wong GS, Egami T, Vohs JM (2001) Structure sensitivity of the reaction of methanol on ceria. Langmuir 17(8):2464–2470

    CAS  Google Scholar 

  28. Siokou A, Nix RM (1999) Interaction of methanol with well-defined ceria surfaces: reflection/absorption infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption study. J Phys Chem B 103(33):6984–6997. https://doi.org/10.1021/jp991127h

    Article  CAS  Google Scholar 

  29. Vohs JM (2013) Site requirements for the adsorption and reaction of oxygenates on metal oxide surfaces. Chem Rev 113(6):4136–4163

    CAS  PubMed  Google Scholar 

  30. Sutton JE, Overbury SH, Beste A (2016) Coadsorbed species explain the mechanism of methanol temperature-programmed desorption on CeO2(111). J Phys Chem C 120(13):7241–7247. https://doi.org/10.1021/acs.jpcc.6b02128

    Article  CAS  Google Scholar 

  31. Beste A, Mullins DR, Overbury SH, Harrison RJ (2008) Adsorption and dissociation of methanol on the fully oxidized and partially reduced (111) cerium oxide surface: dependence on the configuration of the cerium 4f electrons. Surf Sci 602(1):162–175. https://doi.org/10.1016/j.susc.2007.10.024

    Article  CAS  Google Scholar 

  32. Matolin V, Libra J, Skoda M, Tsud N, Prince KC, Skala T (2009) Methanol adsorption on a CeO2(111)/Cu(111) thin film model catalyst. Surf Sci 603(8):1087–1092

    CAS  Google Scholar 

  33. Mei D, Deskins NA, Dupuis M, Ge Q (2007) Methanol adsorption on the clean CeO2(111) surface: a density functional theory study. J Phys Chem C 111(28):10514–10522

    CAS  Google Scholar 

  34. Kropp T, Paier J (2014) Reactions of methanol with pristine and defective ceria (111) surfaces: a comparison of density functionals. J Phys Chem C 118(41):23690–23700

    CAS  Google Scholar 

  35. Namai Y, Fukui K, Iwasawa Y (2004) The dynamic behaviour of CH3OH and NO2 adsorbed on CeO2(111) studied by noncontact atomic force microscopy. Nanotechnology 15(2):S49–S54

    CAS  Google Scholar 

  36. Capdevila-Cortada M, Vilé G, Teschner D, Pérez-Ramírez J, López N (2016) Reactivity descriptors for ceria in catalysis. Appl Catal B 197:299–312. https://doi.org/10.1016/j.apcatb.2016.02.035

    Article  CAS  Google Scholar 

  37. Beste A, Overbury SH (2016) Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces. Phys Chem Chem Phys 18(15):9990–9998

    CAS  PubMed  Google Scholar 

  38. Capdevila-Cortada M, García-Melchor M, López N (2015) Unraveling the structure sensitivity in methanol conversion on CeO2: A DFT + U study. J Catal 327:58–64. https://doi.org/10.1016/j.jcat.2015.04.016

    Article  CAS  Google Scholar 

  39. Wu Z, Li M, Mullins DR, Overbury SH (2012) Probing the surface sites of CeO2 nanocrystals with well-defined surface planes via methanol adsorption and desorption. ACS Catal 2(11):2224–2234. https://doi.org/10.1021/cs300467p

    Article  CAS  Google Scholar 

  40. Binet C, Daturi M (2001) Methanol as an IR probe to study the reduction process in ceria-zirconia mixed compounds. Catal Today 70(1–3):155–167

    CAS  Google Scholar 

  41. Finocchio E, Daturi M, Binet C, Lavalley JC, Blanchard G (1999) Thermal evolution of the adsorbed methoxy species on CexZr1-xO2 solid solution samples: a FT-IR study. Catal Today 52(1):53–63

    CAS  Google Scholar 

  42. Badri A, Binet C, Lavalley JC (1997) Use of methanol as an IR molecular probe to study the surface of polycrystalline ceria. J Chem Soc Faraday Trans 93(6):1159–1168

    CAS  Google Scholar 

  43. Badlani M, Wachs IE (2001) Methanol: a “smart” chemical probe molecule. Catal Lett 75(3–4):137–149

    CAS  Google Scholar 

  44. Kim KS, Barteau MA (1989) Reactions of methanol on TiO2(001) single-crystal surfaces. Surf Sci 223(1–2):13–32

    CAS  Google Scholar 

  45. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    CAS  Google Scholar 

  46. Bates SP, Gillan MJ, Kresse G (1998) Adsorption of methanol on TiO2(110): a first-principles investigation. J Phys Chem B 102(11):2017–2026. https://doi.org/10.1021/jp9804998

    Article  CAS  Google Scholar 

  47. Kropp T, Paier J, Sauer J (2014) Support effect in oxide catalysis: methanol oxidation on vanadia/ceria. J Am Chem Soc 136(41):14616–14625. https://doi.org/10.1021/ja508657c

    Article  CAS  PubMed  Google Scholar 

  48. Wong GS, Concepcion MR, Vohs JM (2002) Oxidation of methanol to formaldehyde on vanadia films supported on CeO2(111). J Phys Chem B 106(25):6451–6455. https://doi.org/10.1021/jp020164x

    Article  CAS  Google Scholar 

  49. Vohs JM, Feng T, Wong GS (2003) Comparison of the reactivity of high-surface area, monolayer vanadia/ceria catalysts with vanadia/CeO2(1 1 1) model systems. Catal Today 85(2–4):303–309. https://doi.org/10.1016/S0920-5861(03)00396-1

    Article  CAS  Google Scholar 

  50. Wong GS, Kragten DD, Vohs JM (2000) Temperature-programmed desorption study of the oxidation of methanol to formaldehyde on TiO2(110)-supported vanadia monolayers. Surf Sci 452(1–3):L293–L297. https://doi.org/10.1016/S0039-6028(00)00396-4

    Article  CAS  Google Scholar 

  51. Zhou J, Mullins DR (2006) Adsorption and reaction of formaldehyde on thin-film cerium oxide. Surf Sci 600(7):1540–1546

    CAS  Google Scholar 

  52. Watkins MB, Foster AS, Shluger AL (2007) Hydrogen cycle on CeO(2) (111) surfaces: density functional theory calculations. J Phys Chem C 111(42):15337–15341

    CAS  Google Scholar 

  53. Mullins DR, Albrecht PM, Chen TL, Calaza FC, Biegalski MD, Christen HM, Overbury SH (2012) Water dissociation on CeO2(100) and CeO2(111) thin films. J Phys Chem C 116(36):19419–19428

    CAS  Google Scholar 

  54. Chen BH, Ma YS, Ding LB, Xu LS, Wu ZF, Yuan Q, Huang WX (2013) Reactivity of hydroxyls and water on a CeO2(111) thin film surface: the role of oxygen vacancy. J Phys Chem C 117(11):5800–5810

    CAS  Google Scholar 

  55. Wu X-P, Gong X-Q, Lu G (2015) Role of oxygen vacancies in the surface evolution of H at CeO2(111): a charge modification effect. Phys Chem Chem Phys 17(5):3544–3549. https://doi.org/10.1039/c4cp04766d

    Article  CAS  PubMed  Google Scholar 

  56. Teng BT, Jiang SY, Yang ZX, Luo MF, Lan YZ (2010) A density functional theory study of formaldehyde adsorption and oxidation on CeO2(111) surface. Surf Sci 604(1):68–78

    CAS  Google Scholar 

  57. Beste A, Overbury SH (2015) Pathways for ethanol dehydrogenation and dehydration catalyzed by ceria (111) and (100) surfaces. J Phys Chem C 119:2447–2455

    CAS  Google Scholar 

  58. Mei D, Deskins NA, Dupuis M, Ge QF (2008) Density functional theory study of methanol decomposition on the CeO2(110) surface. J Phys Chem C 112(11):4257–4266

    CAS  Google Scholar 

  59. Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360

    Google Scholar 

  60. Zhou J, Mullins DR (2006) Rh-promoted methanol decomposition on cerium oxide thin films. J Phys Chem B 110(32):15994–16002. https://doi.org/10.1021/jp061985v

    Article  CAS  PubMed  Google Scholar 

  61. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev-Sci Eng 38(4):439–520. https://doi.org/10.1080/01614949608006464

    Article  CAS  Google Scholar 

  62. Jiang SY, Teng BT, Lu JQ, Liu XS, Yang PF, Yang FY, Luo MF (2008) A density functional theory study of formaldehyde adsorption on CeO2(111) surface. Acta Phys-Chim Sin 24(11):2025–2031

    CAS  Google Scholar 

  63. Mei DH, Deskins NA, Dupuis M (2007) A density functional theory study of formaldehyde adsorption on ceria. Surf Sci 601(21):4993–5001

    CAS  Google Scholar 

  64. Lu JL, Gao HJ, Shaikhutdinov S, Freund HJ (2006) Morphology and defect structure of the CeO2(1 1 1) films grown on Ru(0 0 0 1) as studied by scanning tunneling microscopy. Surf Sci 600(22):5004–5010. https://doi.org/10.1016/j.susc.2006.08.023

    Article  CAS  Google Scholar 

  65. Frey K, Schmidt DJ, Wolverton C, Schneider WF (2014) Implications of coverage-dependent O adsorption for catalytic NO oxidation on the late transition metals. Catal Sci Technol 4(12):4356–4365

    CAS  Google Scholar 

  66. Wang C-C, Wu J-Y, Jiang J-C (2013) Microkinetic simulation of temperature-programmed desorption. J Phys Chem C 117(12):6136–6142. https://doi.org/10.1021/jp309394p

    Article  CAS  Google Scholar 

  67. Lu J, Behtash S, Faheem M, Heyden A (2013) Microkinetic modeling of the decarboxylation and decarbonylation of propanoic acid over Pd(1 1 1) model surfaces based on parameters obtained from first principles. J Catal 305:56–66. https://doi.org/10.1016/j.jcat.2013.04.026

    Article  CAS  Google Scholar 

  68. Lu J, Heyden A (2015) Theoretical investigation of the reaction mechanism of the hydrodeoxygenation of guaiacol over a Ru(0 0 0 1) model surface. J Catal 321:39–50. https://doi.org/10.1016/j.jcat.2014.11.003

    Article  CAS  Google Scholar 

  69. Savara A, Ludwig W, Schauermann S (2013) Kinetic evidence for a non-Langmuir-Hinshelwood surface reaction: H/D exchange over Pd nanoparticles and Pd (111). ChemPhysChem 14(8):1686–1695

    CAS  PubMed  Google Scholar 

  70. Jansen APJ (2012) An introduction to kinetic Monte Carlo simulations of surface reactions. Lecture Notes In Physics, Springer

    Google Scholar 

  71. Hoffmann MJ, Matera S, Reuter K (2014) kmos: a lattice kinetic Monte Carlo framework. Comput Phys Commun 185(7):2138–2150. https://doi.org/10.1016/j.cpc.2014.04.003

    Article  CAS  Google Scholar 

  72. Deutschmann O (2013) Modeling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system. Wiley, Hoboken

    Google Scholar 

  73. Bates SP, Kresse G, Gillan MJ (1998) The adsorption and dissociation of ROH molecules on TiO2(110). Surf Sci 409(2):336–349. https://doi.org/10.1016/S0039-6028(98)00278-7

    Article  CAS  Google Scholar 

  74. Mullins DR (2015) The surface chemistry of cerium oxide. Surf Sci Rep. https://doi.org/10.1016/j.surfrep.2014.11.001

    Article  Google Scholar 

  75. Idriss H (2010) Surface reactions of oxygen containing compounds on metal oxide (TiO2 and UO2) single crystals. In: Rioux R (ed) Model systems in catalysis. Springer, New York, pp 133–154. https://doi.org/10.1007/978-0-387-98049-2_7

    Chapter  Google Scholar 

  76. Garcia-Melchor M, Lopez N (2014) Homolytic products from heterolytic paths in H-2 dissociation on metal oxides: the example of CeO2. J Phys Chem C 118(20):10921–10926

    CAS  Google Scholar 

  77. Chen H-T, Choi YM, Liu M, Lin MC (2007) A theoretical study of surface reduction mechanisms of CeO2(111) and (110) by H2. ChemPhysChem 8(6):849–855. https://doi.org/10.1002/cphc.200600598

    Article  CAS  PubMed  Google Scholar 

  78. Fernandez-Torre D, Carrasco J, Ganduglia-Pirovano MV, Perez R (2014) Hydrogen activation, diffusion, and clustering on CeO2(111): a DFT + U study. J Chem Phys 141(1):014703

    PubMed  Google Scholar 

  79. Vicario G, Balducci G, Fabris S, de Gironcoli S, Baroni S (2006) Interaction of hydrogen with cerium oxide surfaces: a quantum mechanical computational study. J Phys Chem B 110(39):19380–19385

    CAS  PubMed  Google Scholar 

  80. Wang YG, Mei DH, Li J, Rousseau R (2013) DFT + U study on the localized electronic states and their potential role during H2O dissociation and CO oxidation processes on CeO2(111) surface. J Phys Chem C 117(44):23082–23089

    CAS  Google Scholar 

  81. Marrocchelli D, Yildiz B (2012) First-principles assessment of H2S and H2O reaction mechanisms and the subsequent hydrogen absorption on the CeO2(111) surface. J Phys Chem C 116(3):2411–2424

    CAS  Google Scholar 

  82. Fernandez-Torre D, Kosmider K, Carrasco J, Ganduglia-Pirovano MV, Perez R (2012) Insight into the adsorption of water on the clean CeO2(111) surface with van der Waals and hybrid density functionals. J Phys Chem C 116(25):13584–13593

    CAS  Google Scholar 

  83. Kumar S, Schelling PK (2006) Density functional theory study of water adsorption at reduced and stoichiometric ceria (111) surfaces. J Chem Phys 125(20):204704

    PubMed  Google Scholar 

  84. Watkins M, Trevethan T, Shluger AL, Kantorovich LN (2007) Dynamical processes at oxide surfaces studied with the virtual atomic force microscope. Phys Rev B 76(24):245421

    Google Scholar 

  85. Fronzi M, Piccinin S, Delley B, Traversa E, Stampfl C (2009) Water adsorption on the stoichiometric and reduced CeO2 (111) surface: a first-principles investigation. Phys Chem Chem Phys 11(40):9188–9199

    CAS  PubMed  Google Scholar 

  86. Fuente S, Branda M, Illas F (2014) Role of step sites on water dissociation on stoichiometric ceria surfaces. In: Ornellas FR, João Ramos M (eds) Marco Antonio Chaer Nascimento, vol 4. Highlights in theoretical chemistry. Springer, Berlin, pp 19–25. https://doi.org/10.1007/978-3-642-41163-2_3

    Chapter  Google Scholar 

  87. Yang Z, Wang Q, Wei S, Ma D, Sun Q (2010) The effect of environment on the reaction of water on the ceria(111) surface: a DFT + U study. J Phys Chem C 114(35):14891–14899. https://doi.org/10.1021/jp101057a

    Article  CAS  Google Scholar 

  88. Molinari M, Parker SC, Sayle DC, Islam MS (2012) Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria. J Phys Chem C 116(12):7073–7082

    CAS  Google Scholar 

  89. Paier J, Penschke C, Sauer J (2013) Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 113(6):3949–3985

    CAS  PubMed  Google Scholar 

  90. Matolín V, Matolínová I, Dvořák F, Johánek V, Mysliveček J, Prince KC, Skála T, Stetsovych O, Tsud N, Václavů M, Šmíd B (2012) Water interaction with CeO2(1 1 1)/Cu(1 1 1) model catalyst surface. Catal Today 181(1):124–132. https://doi.org/10.1016/j.cattod.2011.05.032

    Article  CAS  Google Scholar 

  91. Masel RI (1996) Principles of adsorption and reaction on solid surfaces. Wiley series in chemical engineering. Wiley, New York

    Google Scholar 

  92. Kundakovic L, Mullins DR, Overbury SH (2000) Adsorption and reaction of H2O and CO on oxidized and reduced Rh/CeOx(111) surfaces. Surf Sci 457(1–2):51–62

    CAS  Google Scholar 

  93. Seeman JI (1986) The Curtin-Hammett principle and the Winstein-Holness equation—new definition and recent extensions to classical concepts. J Chem Educ 63(1):42–48

    CAS  Google Scholar 

  94. Li C, Domen K, Maruya K-i, Onishi T (1990) Spectroscopic identification of adsorbed species derived from adsorption and decomposition of formic acid, methanol, and formaldehyde on cerium oxide. J Catal 125(2):445–455. https://doi.org/10.1016/0021-9517(90)90317-D

    Article  CAS  Google Scholar 

  95. Yang Z, Woo TK, Baudin M, Hermansson K (2004) Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study. J Chem Phys 120(16):7741–7749. https://doi.org/10.1063/1.1688316

    Article  CAS  PubMed  Google Scholar 

  96. Pacchioni G (2015) First principles calculations on oxide-based heterogeneous catalysts and photocatalysts: problems and advances. Catal Lett 145(1):80–94. https://doi.org/10.1007/s10562-014-1386-2

    Article  CAS  Google Scholar 

  97. Jiang Y, Adams JB, van Schilfgaarde M (2005) Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities. J Chem Phys. https://doi.org/10.1063/1.1949189

    Article  PubMed  Google Scholar 

  98. Calaza FC, Xu Y, Mullins DR, Overbury SH (2012) Oxygen vacancy-assisted coupling and enolization of acetaldehyde on CeO2(111). J Am Chem Soc 134(43):18034–18045

    CAS  PubMed  Google Scholar 

  99. Carrasco J, Vile G, Fernandez-Torre D, Perez R, Perez-Ramirez J, Ganduglia-Pirovano MV (2014) Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. J Phys Chem C 118(10):5352–5360

    CAS  Google Scholar 

  100. Beste A, Overbury SH (2015) Pathways for ethanol dehydrogenation and dehydration catalyzed by ceria (111) and (100) surfaces. J Phys Chem C. https://doi.org/10.1021/jp509686f

    Article  Google Scholar 

  101. Mayernick AD, Janik MJ (2011) Methane oxidation on Pd-Ceria: a DFT study of the mechanism over PdxCe1-xO2, Pd, and PdO. J Catal 278(1):16–25

    CAS  Google Scholar 

  102. Wu C, Schmidt DJ, Wolverton C, Schneider WF (2012) Accurate coverage-dependence incorporated into first-principles kinetic models: catalytic NO oxidation on Pt (111). J Catal 286:88–94

    CAS  Google Scholar 

  103. Zhdanov VP (2002) Impact of surface science on the understanding of kinetics of heterogeneous catalytic reactions. Surf Sci 500(1–3):966–985

    CAS  Google Scholar 

  104. Gross H, Campbell CT, King DA (2004) Metal-carbon bond energies for adsorbed hydrocarbons from calorimetric data. Surf Sci 572(2–3):179–190

    CAS  Google Scholar 

  105. King DA (1975) Thermal desorption from metal-surfaces. Surf Sci 47(1):384–402

    CAS  Google Scholar 

  106. van Bavel AP, Ferre DC, Niemantsverdriet JW (2005) Simulating temperature programmed desorption directly from density functional calculations: how adsorbate configurations relate to desorption features. Chem Phys Lett 407(1–3):227–231

    Google Scholar 

  107. Brown WA, Kose R, King DA (1998) Femtomole adsorption calorimetry on single-crystal surfaces. Chem Rev 98(2):797–831

    CAS  PubMed  Google Scholar 

  108. Damjanovic L, Auroux A (2008) Chapter 11 Heterogeneous catalysis on solids. In: Michael EB, Patrick KG (eds) Handbook of thermal analysis and calorimetry, vol 5. Elsevier, New York, pp 387–438

    Google Scholar 

  109. Cardona-Martinez N, Dumesic JA (1992) Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis, vol 38. Academic Press, New York, pp 149–244. https://doi.org/10.1016/S0360-0564(08)60007-3

    Chapter  Google Scholar 

  110. Bray JM, Skavdahl IJ, McEwen JS, Schneider WF (2014) First-principles reaction site model for coverage-sensitive surface reactions: Pt(111)–O temperature programmed desorption. Surf Sci 622:L1–L6. https://doi.org/10.1016/j.susc.2013.12.005

    Article  CAS  Google Scholar 

  111. Tovbin YK (1979) Kinetics of chemisorption in a system of interacting molecules. 3. Thermal-desorption spectra. Kinet Catal 20(5):1009–1017

    Google Scholar 

  112. Klaychko AL (1978) Heat of adsorption on surface with discrete inhomogeneity. Kinet Catal 19(5):983–987

    Google Scholar 

  113. Steinfeld JI, Francisco JS, Hase WL (1999) Chemical kinetics and dynamics. Prentice Hall, Upper Saddle River

    Google Scholar 

  114. Masel RI (2001) Chemical kinetics and catalysis. Wiley, New York

    Google Scholar 

  115. Davis ME, Davis RJ (2003) Fundamentals of chemical reaction engineering. McGraw-Hill, New York

    Google Scholar 

  116. Ellis G, Sidaway J, McCoustra MRS (1998) Numerical simulation of temperature-programmed reaction data: an application in surface chemical kinetics. J Chem Soc Faraday Trans 94(17):2633–2637

    CAS  Google Scholar 

  117. Nieskens DLS, van Bavel AP, Niemantsverdriet JW (2003) The analysis of temperature programmed desorption experiments of systems with lateral interactions; implications of the compensation effect. Surf Sci 546(2–3):159–169

    CAS  Google Scholar 

  118. Dohnalek Z, Kimmel GA, Joyce SA, Ayotte P, Smith RS, Kay BD (2001) Physisorption of CO on the MgO(100) surface. J Phys Chem B 105(18):3747–3751

    CAS  Google Scholar 

  119. Criado JM, Pérez-Maqueda LA, Sánchez-Jiménez PE (2005) Dependence of the preexponential factor on temperature. J Therm Anal Calorim 82(3):671–675. https://doi.org/10.1007/s10973-005-0948-3

    Article  CAS  Google Scholar 

  120. Campbell CT, Árnadóttir L, Sellers JR (2013) Kinetic prefactors of reactions on solid surfaces. Z Phys Chem 227(9–11):1435–1454

    CAS  Google Scholar 

  121. Zhdanov VP (1991) Arrhenius parameters for rate processes on solid surfaces. Surf Sci Rep 12(5):185–242

    Google Scholar 

  122. Savara A, Schmidt CM, Geiger FM, Weitz E (2009) Adsorption entropies and enthalpies and their implications for adsorbate dynamics. J Phys Chem C 113(7):2806–2815

    CAS  Google Scholar 

  123. Varhegyi G (2007) Aims and methods in non-isothermal reaction kinetics. J Anal Appl Pyrol 79(1–2):278–288

    CAS  Google Scholar 

  124. Russell NM, Ekerdt JG (1996) Nonlinear parameter estimation technique for kinetic analysis of thermal desorption data. Surf Sci 364(2):199–218

    CAS  Google Scholar 

  125. Li Z, Werner K, Qian K, You R, Płucienik A, Jia A, Wu L, Zhang L, Pan H, Kuhlenbeck H, Shaikhutdinov S, Huang W, Freund H-J (2019) Oxidation of reduced ceria by incorporation of hydrogen. Angew Chem 131(41):14828–14835

    Google Scholar 

  126. Werner K, Weng X, Calaza F, Sterrer M, Kropp T, Paier J, Sauer J, Wilde M, Fukutani K, Shaikhutdinov S, Freund H-J (2017) Toward an understanding of selective alkyne hydrogenation on ceria: on the impact of O vacancies on H interaction with CeO (111). J Am Chem Soc 139(48):17608–17616

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. A. Savara thanks David R. Mullins for providing experimentally obtained TPR data and for useful conversations. A. Savara also thanks Michael Caracotsios for aid in understanding the basic use of Athena Visual Studio modelling and estimation software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Savara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under contract DEAC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savara, A. Microkinetic simulation and fitting of the temperature programmed reaction of methanol on CeO2(111): H2 and H2O + V production. Reac Kinet Mech Cat 129, 181–203 (2020). https://doi.org/10.1007/s11144-019-01710-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01710-w

Keywords

Navigation