Skip to main content
Log in

Enhanced catalytic activity towards formaldehyde oxidation over Ag catalysts supported on carbon nanotubes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this paper, highly active Ag catalysts supported on carbon nanotubes (CNTs) were synthesized by impregnation and two kinds of simple one step co-reduction methods with reducing agents of glycerol and dimethyl sulfoxide (denoted as IM, GL and DMSO sample). The catalysts were characterized by N2 adsorption–desorption, X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy, transmission electron microscopy, UV–visible spectrometer, infrared spectrometry, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR). DMSO sample showed the high reaction activity, above 90% HCHO conversion at 150 °C, whereas its surface Ag content is only less than ten times of IM sample in DMSO sample. The XRD, SEM, BET analysis, XPS and H2-TPR results revealed that the highly dispersed Ag/CNTs prepared by chemical reduction method in DMSO sample showed a smaller silver particles size, high surface areas and the enriched surface oxygen species. In general, the highest activity of DMSO samples in HCHO oxidation was associated with its higher silver dispersion and the strong interaction between Ag and CNTs, thereby increasing the effectiveness of oxygen mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang LF, Sakurai M, Kameyama H (2008) Catalytic oxidation of dichloromethane and toluene over platinum alumite catalyst. J Hazard Mater 154(1–3):390–395. https://doi.org/10.1016/j.jhazmat.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  2. Zhang X, Yang Y, Lv X, Wang Y, Liu N, Chen D, Cui L (2019) Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework. J Hazard Mater 366:140–150

    Article  CAS  Google Scholar 

  3. Lakshmanan P, Delannoy L, Richard V, Methivier C, Potvin C, Louis C (2010) Total oxidation of propene over Au/xCeO(2)–Al2O3 catalysts: influence of the CeO2 loading and the activation treatment. Appl Catal B 96(1–2):117–125. https://doi.org/10.1016/j.apcatb.2010.02.009

    Article  CAS  Google Scholar 

  4. Zhang X, Wang Y, Yang Y, Chen D (2015) Recent progress in the removal of volatile organic compounds by mesoporous silica materials and supported catalysts. Acta Phys Chim Sin 31(9):1633–1646

    CAS  Google Scholar 

  5. Cellier C, Lambert S, Gaigneaux EM, Poleunis C, Ruaux V, Eloy P, Lahousse C, Bertrand P, Pirard JP, Grange P (2007) Investigation of the preparation and activity of gold catalysts in the total oxidation of n-hexane. Appl Catal B 70(1–4):406–416. https://doi.org/10.1016/j.apcatb.2006.01.026

    Article  CAS  Google Scholar 

  6. Mei J, Shao Y, Lu S, Ma Y, Ren L (2018) Synthesis of Al2O3 with tunable pore size for efficient formaldehyde oxidation degradation performance. J Mater Sci 53(5):3375–3387. https://doi.org/10.1007/s10853-017-1795-x

    Article  CAS  Google Scholar 

  7. Fan Z, Fang W, Zhang Z, Chen M, Shangguan W (2018) Highly active rod-like Co3O4 catalyst for the formaldehyde oxidation reaction. Catal Commun 103:10–14. https://doi.org/10.1016/j.catcom.2017.09.003

    Article  CAS  Google Scholar 

  8. Zhang X, Yang Y, Li H, Zou X, Wang Y (2016) Non-TiO2 photocatalysts used for degradation of gaseous VOCs. Prog Chem 28(10):1550–1559

    Google Scholar 

  9. Zhang L, Chen L, Li Y, Peng Y, Chen F, Wang L, Zhang C, Meng X, He H, Xiao F-S (2017) Complete oxidation of formaldehyde at room temperature over an Al-rich Beta zeolite supported platinum catalyst. Appl Catal B 219:200–208. https://doi.org/10.1016/j.apcatb.2017.07.015

    Article  CAS  Google Scholar 

  10. Chen D, Qu Z, Lv Y, Lu X, Chen W, Gao X (2015) Effect of oxygen pretreatment on the surface catalytic oxidation of HCHO on Ag/MCM-41 catalysts. J Mol Catal A 404–405:98–105. https://doi.org/10.1016/j.molcata.2015.04.014

    Article  CAS  Google Scholar 

  11. Chen D, Qu Z, Shen S, Li X, Shi Y, Wang Y, Fu Q, Wu J (2011) Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde. Catal Today 175(1):338–345. https://doi.org/10.1016/j.cattod.2011.03.059

    Article  CAS  Google Scholar 

  12. Chen D, Qu Z, Sun Y, Gao K, Wang Y (2013) Identification of reaction intermediates and mechanism responsible for highly active HCHO oxidation on Ag/MCM-41 catalysts. Appl Catal B 142–143:838–848. https://doi.org/10.1016/j.apcatb.2013.06.025

    Article  CAS  Google Scholar 

  13. Dong X, Zhang H-B, Lin G-D, Yuan Y-Z, Tsai KR (2003) Highly active CNT-promoted Cu–ZnO–Al2O3 catalyst for methanol synthesis from H2/CO/CO2. Catal Lett 85(3–4):237–246. https://doi.org/10.1023/A:1022158116871

    Article  CAS  Google Scholar 

  14. Jiang S, Song S (2013) Enhancing the performance of Co3O4/CNTs for the catalytic combustion of toluene by tuning the surface structures of CNTs. Appl Catal B 140–141:1–8. https://doi.org/10.1016/j.apcatb.2013.03.040

    Article  CAS  Google Scholar 

  15. Zhang Y, Zheng Y, Wang X, Lu X (2015) Fabrication of Mn-CeOx/CNTs catalysts by a redox method and their performance in low-temperature NO reduction with NH3. RSC Adv 5(36):28385–28388. https://doi.org/10.1039/c5ra01129a

    Article  CAS  Google Scholar 

  16. Melvin GJH, Ni Q-Q, Natsuki T, Wang Z, Morimoto S, Fujishige M, Takeuchi K, Hashimoto Y, Endo M (2015) Ag/CNT nanocomposites and their single- and double-layer electromagnetic wave absorption properties. Synth Met 209:383–388. https://doi.org/10.1016/j.synthmet.2015.08.017

    Article  CAS  Google Scholar 

  17. Chen W, Fan Z, Pan X, Bao X (2008) Effect of confinement in carbon nanotubes on the activity of Fischer–Tropsch iron catalyst. J Am Chem Soc 130(29):9414–9419. https://doi.org/10.1021/ja8008192

    Article  CAS  PubMed  Google Scholar 

  18. Qu Z, Miao L, Wang H, Fu Q (2015) Highly dispersed Fe2O3 on carbon nanotubes for low-temperature selective catalytic reduction of NO with NH3. Chem Commun 51(5):956–958. https://doi.org/10.1039/C4CC06941B

    Article  CAS  Google Scholar 

  19. Cai S, Hu H, Li H, Shi L, Zhang D (2016) Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2 tolerance. Nanoscale 8(6):3588–3598. https://doi.org/10.1039/C5NR08701E

    Article  CAS  PubMed  Google Scholar 

  20. Song S, Yang H, Rao R, Liu H, Zhang A (2010) High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst. Appl Catal A 375(2):265–271. https://doi.org/10.1016/j.apcata.2010.01.008

    Article  CAS  Google Scholar 

  21. Zhang D, Zhang L, Shi L, Fang C, Li H, Gao R, Huang L, Zhang J (2013) In situ supported MnOx–CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale 5(3):1127–1136. https://doi.org/10.1039/c2nr33006g

    Article  CAS  PubMed  Google Scholar 

  22. Fan X, Qiu F, Yang H, Tian W, Hou T, Zhang X (2011) Selective catalytic reduction of NOX with ammonia over Mn–Ce–OX/TiO2-carbon nanotube composites. Catal Commun 12(14):1298–1301. https://doi.org/10.1016/j.catcom.2011.05.011

    Article  CAS  Google Scholar 

  23. Liu S, Wu X, Liu W, Chen W, Ran R, Li M, Weng D (2016) Soot oxidation over CeO2 and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J Catal 337:188–198. https://doi.org/10.1016/j.jcat.2016.01.019

    Article  CAS  Google Scholar 

  24. Zhang XD, Qu ZP, Li XY, Wen M, Quan X, Ma D, Wu JJ (2010) Studies of silver species for low-temperature CO oxidation on Ag/SiO2 catalysts. Sep Purif Technol 72(3):395–400. https://doi.org/10.1016/j.seppur.2010.03.012

    Article  CAS  Google Scholar 

  25. Zheng J, Lin H, Zheng X, Duan X, Yuan Y (2013) Highly efficient mesostructured Ag/SBA-15 catalysts for the chemoselective synthesis of methyl glycolate by dimethyl oxalate hydrogenation. Catal Commun 40:129–133. https://doi.org/10.1016/j.catcom.2013.06.022

    Article  CAS  Google Scholar 

  26. Rodríguez-Gattorno G, Díaz D, Rendón L, Hernández-Segura GO (2002) Metallic nanoparticles from spontaneous reduction of silver(I) in DMSO. Interaction between nitric oxide and silver nanoparticles. J Phys Chem B 106(10):2482–2487. https://doi.org/10.1021/jp012670c

    Article  CAS  Google Scholar 

  27. Zhang XD, Yang Y, Song L, Wang YX, He C, Wang Z, Cui LF (2018) High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol Catal 447:80–89. https://doi.org/10.1016/j.jmcat.2018.01.007

    Article  CAS  Google Scholar 

  28. Zhang XD, Dong H, Wang Y, Liu N, Zuo YH, Cui LF (2016) Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation. Chem Eng J 283:1097–1107. https://doi.org/10.1016/j.cej.2015.08.064

    Article  CAS  Google Scholar 

  29. Bogdanchikova N, Meunier FC, Avalos-Borja M, Breen JP, Pestryakov A (2002) On the nature of the silver phases of Ag/Al2O3 catalysts for reactions involving nitric oxide. Appl Catal B 36(4):287–297

    Article  CAS  Google Scholar 

  30. More PM, Jagtap N, Kulal AB, Dongare MK, Umbarkar SB (2014) Magnesia doped Ag/Al2O3—sulfur tolerant catalyst for low temperature HC-SCR of NOx. Appl Catal B 144:408–415. https://doi.org/10.1016/j.apcatb.2013.07.044

    Article  CAS  Google Scholar 

  31. Lee K-C, Lin S-J, Lin C-H, Tsai C-S, Lu Y-J (2008) Size effect of Ag nanoparticles on surface plasmon resonance. Surf Coat Technol 202(22–23):5339–5342. https://doi.org/10.1016/j.surfcoat.2008.06.080

    Article  CAS  Google Scholar 

  32. Qu Z, Chen D, Sun Y, Wang Y (2014) High catalytic activity for formaldehyde oxidation of AgCo/APTES@MCM-41 prepared by two steps method. Appl Catal A 487:100–109. https://doi.org/10.1016/j.apcata.2014.08.044

    Article  CAS  Google Scholar 

  33. Zhang X, Qu Z, Yu F, Wang Y (2013) High-temperature diffusion induced high activity of SBA-15 supported Ag particles for low temperature CO oxidation at room temperature. J Catal 297:264–271. https://doi.org/10.1016/j.jcat.2012.10.019

    Article  CAS  Google Scholar 

  34. Yang Y, Hou F, Li H, Liu N, Wang Y, Zhang X (2017) Facile synthesis of Ag/KIT-6 catalyst via a simple one pot method and application in the CO oxidation. J Porous Mater 24(6):1661–1665. https://doi.org/10.1007/s10934-017-0406-1

    Article  CAS  Google Scholar 

  35. Furusawa T, Seshan K, Lercher JA, Lefferts L, K-i Aika (2002) Selective reduction of NO to N2 in the presence of oxygen over supported silver catalysts. Appl Catal B 37(3):205–216

    Article  CAS  Google Scholar 

  36. Zhang X, Dong H, Gu Z, Wang G, Zuo Y, Wang Y, Cui L (2015) Preferential carbon monoxide oxidation on Ag/Al-SBA-15 catalysts: effect of the Si/Al ratio. Chem Eng J 269:94–104. https://doi.org/10.1016/j.cej.2015.01.085

    Article  CAS  Google Scholar 

  37. Koebel M, Madia G, Raimondi F, Wokaun A (2002) Enhanced reoxidation of vanadia by NO2 in the fast SCR reaction. J Catal 209(1):159–165. https://doi.org/10.1006/jcat.2002.3624

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 21507109), the Natural Science Foundation of Yangzhou (No. YZ2015109) and the Natural science fund for colleges and universities in Jiangsu Province (No. 15KJB610016). The study was supported by Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE (No. KLIEEE-17-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Shi, J., Yao, Y. et al. Enhanced catalytic activity towards formaldehyde oxidation over Ag catalysts supported on carbon nanotubes. Reac Kinet Mech Cat 127, 315–329 (2019). https://doi.org/10.1007/s11144-019-01549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01549-1

Keywords

Navigation