Skip to main content
Log in

Synthesis of Al2O3 with tunable pore size for efficient formaldehyde oxidation degradation performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alumina aerogel is of great interest for many potential applications because of high surface areas, intrinsic acid, and excellent mechanical properties. Different particle and pore size distribution can show superior performance in some applications, and therefore, the realization of the regulation of alumina particle and pore size has important industrialization significance. Herein, we demonstrate a simple method to prepare alumina aerogels with high surface areas and tunable pore size using sol–gel method with adding polyethylene glycol (PEG). And PEG is used as not only complexing agent to change the size of alumina aerogel particles and enhance the three-dimensional interconnected network structure, but also phase separation agent to promote the formation of macroporous. By changing the molecular mass of PEG and the amount of PEG of the same molecular mass, tunable pore size can be easily achieved. Owing to their high surface area and the three-dimensional network structure for promoting the transport of material into mesoporous where reactions take place, Al2O3 with centered pore size distribution was demonstrated to have excellent catalytic performance. In particular, the prepared Al2O3 adding 0.03 molar ratio of PEG-8000 exhibits the excellent catalytic activity for formaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Suh DJ, Park TJ (1996) Sol-gel strategies for pore size control of high-surface-area transition-metal oxide aerogels. Chem Mater 8:509–513

    Article  Google Scholar 

  2. McGrath KM, Dabbs DM, Yao N et al (1997) Formation of a silicate L-3 phase with continuously adjustable pore sizes. Science 277:552–556

    Article  Google Scholar 

  3. Meng X, Duan L, Qin H et al (2014) A novel synthesis and characterization of ordered meso/macroporous alumina with hierarchical and adjustable pore size. J Nanosci Nanotechnol 14:7340–7344

    Article  Google Scholar 

  4. Yoo J, Bang Y, Han SJ et al (2016) Hydrogen production by steam reforming of liquefied natural gas (LNG) over magnesium-doped nickel-alumina aerogel catalyst. J Nanosci Nanotechnol 16:10835–10840

    Article  Google Scholar 

  5. Zhao X, Cao Y, Li H et al (2017) Sc promoted and aerogel confined Ni catalysts for coking-resistant dry reforming of methane. RSC Adv 7:4735–4745

    Article  Google Scholar 

  6. Yoo J, Bang Y, Han SJ et al (2015) Hydrogen production by tri-reforming of methane over nickel–alumina aerogel catalyst. J Mol Catal A-Chem 410:74–80

    Article  Google Scholar 

  7. Zhao X, Lu M, Li H et al (2017) In situ preparation of Ni nanoparticles in cerium-modified silica aerogels for coking- and sintering-resistant dry reforming of methane. New J Chem 41:4869–4878

    Article  Google Scholar 

  8. Cao Y, Lu M, Fang J et al (2017) Hexagonal boron nitride supported mesoSiO2-confined Ni catalysts for dry reforming of methane. Chem Commun 53:7549–7552

    Article  Google Scholar 

  9. Wang W, Zhang K, Yang Y et al (2014) Synthesis of mesoporous Al2O3 with large surface area and large pore diameter by improved precipitation method. Micropor Mesopor Mater 193:47–53

    Article  Google Scholar 

  10. Kelly DN, Wakabayashi RH, Stacy AM et al (2014) A modified sol–gel technique for pore size control in porous aluminum oxide nanowire templates. ACS Appl Mater Interfaces 6:20122–20129

    Article  Google Scholar 

  11. Rouquerol J, Avnir D, Fairbridge CW et al (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66:1739–1758

    Article  Google Scholar 

  12. Brinker CJ, Lu YF, Sellinger A et al (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585

    Article  Google Scholar 

  13. Yuan Q, Yin A, Luo C et al (2008) Facile synthesis for ordered mesoporous gamma-aluminas with high thermal stability. J Am Chem Soc 130:3465–3472

    Article  Google Scholar 

  14. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants. Science 269:1242–1244

    Article  Google Scholar 

  15. Tian BZ, Liu XY, Tu B et al (2003) Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs. Nat Mater 2:159–163

    Article  Google Scholar 

  16. Baumann TF, Gash AE, Chinn SC et al (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater 17:395–401

    Article  Google Scholar 

  17. Wu Q, Zhang F, Yang J et al (2011) Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure. Micropor Mesopor Mater 143:406–412

    Article  Google Scholar 

  18. Yao N, Xiong GX, Zhang YH et al (2001) Preparation of novel uniform mesoporous alumina catalysts by the sol–gel method. Catal Today 68:97–109

    Article  Google Scholar 

  19. Yabuki M, Takahashi R, Sato S et al (2002) Silica alumina catalysts prepared in sol–gel process of TEOS with organic additives. Phys Chem 4:4830–4837

    Google Scholar 

  20. Drisko GL, Zelcer A, Luca V et al (2010) One-pot synthesis of hierarchically structured ceramic monoliths with adjustable porosity. Chem Mater 22:4379–4385

    Article  Google Scholar 

  21. Lafon O, Thankamony ASL, Kobayashi T et al (2013) Mesoporous silica nanoparticles loaded with surfactant: low temperature magic angle spinning C-13 and Si-29 NMR enhanced by dynamic nuclear polarization. J Phys Chem C 117:1375–1382

    Article  Google Scholar 

  22. Hartmann S, Sachse A, Galarneau A (2012) Challenges and strategies in the synthesis of mesoporous alumina powders and hierarchical alumina monoliths. Materials 5:336–349

    Article  Google Scholar 

  23. Tokudome Y, Fujita K, Nakanishi K et al (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by phase separation. Chem Mater 19:3393–3398

    Article  Google Scholar 

  24. Li L, Duan W, Yuan Q et al (2009) Hierarchical gamma-Al2O3 monoliths with highly ordered 2D hexagonal mesopores in macroporous walls. Chem Commun (41):6174–6176

  25. Dhainaut J, Deville S, Amirouche I et al (2016) A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics 4(1):6

    Article  Google Scholar 

  26. Dhainaut J, Piana G, Deville S et al (2014) Freezing-induced ordering of block copolymer micelles. Chem Commun 50:12572–12574

    Article  Google Scholar 

  27. Ewlad-Ahmed AM, Morris MA, Patwardhan SV et al (2012) Removal of formaldehyde from air using functionalized silica supports. Environ Sci Technol 46:13354–13360

    Article  Google Scholar 

  28. Zhang L, Yu X, Hu H et al (2015) Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature. Sci Rep 5:9298

    Article  Google Scholar 

  29. Chen B, Zhu X, Wang Y et al (2016) Gold stabilized on various oxide supports catalyzing formaldehyde oxidation at room temperature. Chin J Catal 37:1729–1737

    Article  Google Scholar 

  30. Yan Z, Xu Z, Yu J et al (2016) Enhanced formaldehyde oxidation on CeO2/AlOOH-supported Pt catalyst at room temperature. Appl Catal B-Environ 199:458–465

    Article  Google Scholar 

  31. Han Y, Zheng Z, Yin C et al (2016) Catalytic oxidation of formaldehyde on iron ore tailing. J Taiwan Inst Chem Eng 66:217–221

    Article  Google Scholar 

  32. Bai B, Qiao Q, Li J et al (2016) Synthesis of three-dimensional ordered mesoporous MnO2 and its catalytic performance in formaldehyde oxidation. Chin J Catal 37:27–31

    Article  Google Scholar 

  33. Chen B, Zhu X, Crocker M et al (2014) FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Appl Catal B-Environ 154:73–81

    Article  Google Scholar 

  34. Gheorghiu S, Coppens MO (2004) Optimal bimodal pore networks for heterogeneous catalysis. AIChE J 50:812–820

    Article  Google Scholar 

  35. Groen JC, Zhu W, Brouwer S et al (2007) Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J Am Chem Soc 129:355–360

    Article  Google Scholar 

  36. Yuan ZY, Ren TZ, Azioune A et al (2006) Self-assembly of hierarchically mesoporous-macroporous phosphated nanocrystalline aluminum (oxyhydr)oxide materials. Chem Mater 18:1753–1767

    Article  Google Scholar 

  37. Dacquin J, Dhainaut J, Duprez D et al (2009) An efficient route to highly organized tunable macroporous-mesoporous alumina. J Am Chem Soc 131:12896

    Article  Google Scholar 

  38. Muhler M, Schütze J, Wesemann M et al (1990) The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene: I. Solid-state chemistry and bulk characterization. J Catal 126:339–360

    Article  Google Scholar 

  39. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+, and Fe3+, ions in oxide materials. Appl Surf Sci 254:2441–2449

    Article  Google Scholar 

  40. Xue X, Hanna K, Deng N (2009) Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. J Hazard Mater 166:407–414

    Article  Google Scholar 

  41. Usman M, Faure P, Ruby C (2012) Remediation of PAH-contaminated soils by magnetite catalyzed fenton-like oxidation. Appl Catal B Environ 117:10–17

    Article  Google Scholar 

  42. Rusevova K, Kopinke FD, Georgi A (2012) Nano-sized magnetic iron oxides as catalysts for heterogeneous fenton-like reactions-influence of Fe(II)/Fe(III) ratio on catalytic performance. J Hazard Mater 241–242:433–440

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Nature Science Foundation of Jiangsu Province of China (BK20151408) and the Fundamental Research Funds for the Central Universities (3207046418, KYLX16_0193, and 2242017k1G006).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors.

Corresponding author

Correspondence to Lili Ren.

Ethics declarations

Conflict of interest

The author declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, J., Shao, Y., Lu, S. et al. Synthesis of Al2O3 with tunable pore size for efficient formaldehyde oxidation degradation performance. J Mater Sci 53, 3375–3387 (2018). https://doi.org/10.1007/s10853-017-1795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1795-x

Keywords

Navigation