Skip to main content
Log in

Chemical fixation of CO2: the influence of linear amphiphilic anions on surface active ionic liquids (SAILs) as catalysts for synthesis of cyclic carbonates under solvent-free conditions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) conversion is an efficient option to mitigate environmental impacts caused by CO2 high concentration in the atmosphere. In this work are described catalytic activities of surface active ionic liquids (SAILs) composed of well-known cations 1-butyl-3-methylimidazolium ([bmim+]) and tetra-n-butylammonium ([TBA+]) and long alkyl chain anions: lauryl sulfate ([C12SO4]), lauryl ether sulfate ([C12ESO4]), lauryl benzene sulfonate ([C12BSO3]) and lauroyl sarcosinate ([C12SAR]) for cyclic carbonate synthesis. Results evidenced that [TBA+] is more active as a catalyst due to its higher molecular volume increasing the cation–anion distance and weakening the electrostatic interaction resulting in a more electrophilic cation. The [TBA][C12BSO3] SAIL presented better catalytic activity for styrene carbonate (SC) synthesis, reaching 81.4% of conversion and 87.0% of selectivity as well as the high recycle capacity and possible application as catalyst for the syntheses of different cyclic carbonates: glycidyl isopropyl ether carbonate (GC) and epichlorohydrin carbonate (EC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zoundi Z (2017) CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew Sust Energ Rev 72:1067–1075

    Article  CAS  Google Scholar 

  2. De Souza ALA, Vieira MO, Polesso BB, Cobalchini FW, Bernard FL, Vecchia FD, Einloft S (2018) Sorção de CO2 utilizando líquido iônico aditivado com extensores de área superficial. Quim Nova 41(6):656–661

    Google Scholar 

  3. Otto A, Grube T, Schiebahn S, Stolten D (2015) Closing the loop: captured CO2 as a feedstock in the chemical industry. Energy Environ Sci 8:3283–3297

    Article  CAS  Google Scholar 

  4. Rafiee A, Khalilpour RK, Milani D, Panahi M (2018) Trends in CO2 conversion and utilization: a review from process systems perspective. J Environ Chem Eng 6:5771–5794

    Article  CAS  Google Scholar 

  5. Song QW, Zhou ZH, He LN (2017) Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem 19:3707–3728

    Article  CAS  Google Scholar 

  6. Vieira MO, Aquino AS, Schütz MK, Vecchia FD, Ligabue R, Seferin M, Einloft S (2017) Chemical conversion of CO2: evaluation of different ionic liquids as catalysts in dimethyl carbonate synthesis. Energy Procedia 114:7141–7149

    Article  CAS  Google Scholar 

  7. Bobbink FD, Dyson PJ (2016) Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: state-of-the-art and beyond. J Catal 343:52–61

    Article  CAS  Google Scholar 

  8. Zhang X, Geng W, Yue C, Wu W, Xiao L (2016) Multilayered supported ionic liquids bearing a carboxyl group: highly efficient catalysts for chemical fixation of carbon dioxide. J Environ Chem Eng 4(2):2565–2572

    Article  CAS  Google Scholar 

  9. Ji L, Luo Z, Zhang Y, Wang R, Ji Y, Xia F, Gao G (2018) Imidazolium ionic liquids/organic bases: efficient intermolecular synergistic catalysts for the cycloaddition of CO2 and epoxides under atmospheric pressure. Mol Catal 446:124–130

    Article  CAS  Google Scholar 

  10. Aquino AS, Bernard FL, Vieira MO, Borges JV, Rojas MF, Vecchia FD, Ligabue RA, Seferin M, Menezes S, Einloft S (2014) A new approach to CO2 capture and conversion using imidazolium based-ionic liquids as sorbent and catalyst. J Braz Chem Soc 25(12):2251–2257

    CAS  Google Scholar 

  11. Zhu Z, Zhang Y, Wang K, Fu X, Chen F, Jing H (2016) Chiral oligomers of spiro-salencobalt(III)X for catalytic asymmetric cycloaddition of epoxides with CO2. Catal Commun 81:50–53

    Article  CAS  Google Scholar 

  12. Feng C, Guo C, Hu D, Guo J, Cao X, Akram N, Wang J (2018) Catalytic performance of Co 1,3,5-benzenetricarboxylate in the conversion of CO2 to cyclic carbonates. Reac Kinet Mech Cat 125(2):633–645

    Article  CAS  Google Scholar 

  13. Aquino AS, Bernard FL, Borges JV, Mafra L, Vecchia FD, Vieira MO, Ligabue R, Seferin M, Chaban VV, Cabrita EJ, Einloft S (2015) Rationalizing the role of the anion in CO2 capture and conversion using imidazolium-based ionic liquid modified mesoporous silica. RSC Adv 5:64220–64227

    Article  CAS  Google Scholar 

  14. Monteiro WF, Vieira MO, Aquino AS, Souza MO, Lima J, Einloft S, Ligabue R (2017) CO2 conversion to propylene carbonate catalyzed by ionic liquid containing organosilane groups supported on titanate nanotubes/nanowires. Appl Catal A-Gen 544:46–54

    Article  CAS  Google Scholar 

  15. Nourian M, Zadehahmadi F, Kardanpour R, Tangestaninejad S, Moghadam M, Mirkhani V, Baltork IM, Bahadori M (2017) Chemical fixation of carbon dioxide catalyzed by magnetically recoverable NH2-MIL-101(Al) as an elegant nanoreactor. Catal Commun 94:42–46

    Article  CAS  Google Scholar 

  16. Karamé I, Zaher S, Eid N, Christ L (2018) New zinc/tetradentate N4 ligand complexes: efficient catalysts for solvent-free preparation of cyclic carbonates by CO2/epoxide coupling. Mol Catal 456:87–95

    Article  CAS  Google Scholar 

  17. Bharmoria P, Mehta MJ, Pancha I, Kumar A (2014) Structural and functional stability of cellulase in aqueous-biamphiphilic ionic liquid surfactant solution. J Phys Chem B 118(33):9890–9899

    Article  CAS  PubMed  Google Scholar 

  18. Vekariya RL, Dhar A, Lunagariya J (2017) Synthesis and characterization of double –SO3H functionalized Brönsted acidic hydrogensulfate ionic liquid confined with silica through sol-gel method. Compos Interfaces 24:801–816

    Article  CAS  Google Scholar 

  19. Vekariya RL, Kumar NS (2017) Micellization behaviour of surface active N-alkyl pyridinium dodecylsulphate task-specific ionic liquids in aqueous solutions. Colloid Surf A-Physicochem Eng Asp 529:203–209

    Article  CAS  Google Scholar 

  20. Vieira MO, Monteiro WF, Ligabue R, Seferin M, Chaban VV, Andreeva NA, Nascimento JF, Einloft S (2017) Ionic liquids composed of linear amphiphilic anions: synthesis, physicochemical characterization, hydrophilicity and interaction with carbon dioxide. J Mol Liq 241:64–73

    Article  CAS  Google Scholar 

  21. Müller E, Zahnweh L, Estrine B, Zech O, Allolio C, Heilmann J, Kunz W (2018) Oligoether carboxylate counterions: an innovative way towards surfactant ionic liquids. J Mol Liq 251:61–69

    Article  CAS  Google Scholar 

  22. Zhao Y, Chen X, Jing B, Wang X, Ma F (2009) Novel gel phase formed by mixing a cationic surfactive ionic liquid C16mimCl and an anionic surfactant SDS in aqueous solution. J Phys Chem B 113(4):983–988

    Article  CAS  PubMed  Google Scholar 

  23. Selwent A, Łuczak J (2016) Micellar aggregation of Triton X-100 surfactant in imidazolium ionic liquids. J Mol Liq 221:557–566

    Article  CAS  Google Scholar 

  24. Porada JH, Mansueto M, Laschat S, Stubenrauch C (2017) Microemulsions with hydrophobic ionic liquids: influence of the structure of the anion. J Mol Liq 227:202–209

    Article  CAS  Google Scholar 

  25. Jasiak K, Siewniak A, Kopczynska K, Chrobok A, Baj S (2016) Hydrogensulphate ionic liquids as an efficient catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. J Chem Technol Biotechnol 91:2827–2833

    Article  CAS  Google Scholar 

  26. Vieira MO, Monteiro WF, Neto BS, Ligabue R, Chaban VV, Einloft S (2018) Surface active ionic liquids as catalyst for CO2 conversion to propylene carbonate. Catal Lett 148:108–118

    Article  CAS  Google Scholar 

  27. Jawad A, Rezaei F, Rownaghi AA (2017) Porous polymeric hollow fibers as bifunctional catalysts for CO2 conversion to cyclic carbonates. J CO2 Util 21:589–596

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  29. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  30. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44(2):129–138

    Article  CAS  Google Scholar 

  31. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M Jr, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363

    Article  CAS  Google Scholar 

  32. Zhu M, Srinivas D, Bhogeswararao S, Ratnasamy P, Carreon MA (2013) Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide. Catal Commun 32:36–40

    Article  CAS  Google Scholar 

  33. Sun J, Fujita S, Bhanage BM, Arai M (2004) One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide. Catal Today 93:383–388

    Article  CAS  Google Scholar 

  34. Montoya CA, Paninho AB, Felix PM, Zakrzewska ME, Vital J, Visak VN, Nunes AVM (2015) Styrene carbonate synthesis from CO2 using tetrabutylammonium bromide as a non-supported heterogeneous catalyst phase. J Supercrit Fluids 100:155–159

    Article  CAS  Google Scholar 

  35. Paninho AB, Ventura ALR, Branco LC, Pombeiro AJL, Silva MFCG, Ponte MN, Mahmudov KT, Nunes AVM (2018) CO2 + ionic liquid biphasic system for reaction/product separation in the synthesis of cyclic carbonates. J Supercrit Fluids 132:71–75

    Article  CAS  Google Scholar 

  36. Xiao LF, Yue QF, Xia CG, Xu LW (2008) Supported basic ionic liquid: highly effective catalyst for the synthesis of 1,2-propylene glycol from hydrolysis of propylene carbonate. J Mol Catal A-Chem 279:230–234

    Article  CAS  Google Scholar 

  37. Jin X, Bobba P, Reding N, Song Z, Thapa PS, Prasad G, Subramaniam B, Chaudhari RV (2017) Kinetic modeling of carboxylation of propylene oxide to propylene carbonate using ion-exchange resin catalyst in a semi-batch slurry reactor. Chem Eng Sci 168:189–203

    Article  CAS  Google Scholar 

  38. Ju HY, Manju MD, Kim KH, Park SW, Park DW (2008) Catalytic performance of quaternary ammonium salts in the reaction of butyl glycidyl ether and carbon dioxide. J Ind Eng Chem 14(2):157–160

    Article  CAS  Google Scholar 

  39. North M, Pasquale R (2009) Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew Chem 121:2990–2992

    Article  Google Scholar 

  40. Kim HS, Kim JJ, Kim H, Jang HG (2003) Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J Catal 220(1):44–46

    Article  CAS  Google Scholar 

  41. Sun J, Fujita S, Arai M (2005) Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J Organomet Chem 690(15):3490–3497

    Article  CAS  Google Scholar 

  42. Zhang H, Kong X, Cao C, Pang G, Shi Y (2016) An efficient ternary catalyst ZnBr2/K2CO3/[Bmim]Br for chemical fixation of CO2 into cyclic carbonates at ambient conditions. J CO2 Util 14:76–82

    Article  CAS  Google Scholar 

  43. Dai W, Yang W, Zhang Y, Wang D, Luo X, Tu X (2017) Novel isothiouronium ionic liquid as efficient catalysts for the synthesis of cyclic carbonates from CO2 and epoxides. J CO2 Util 17:256–262

    Article  CAS  Google Scholar 

  44. Li B (2018) A novel metal-organic framework as a heterogeneous catalysis for the solvent-free conversion of CO2 and epoxides into cyclic carbonate. Inorg Chem Commun 88:56–59

    Article  CAS  Google Scholar 

  45. Wu Y, Song X, Li S, Zhang J, Yang X, Shen P, Gao L, Wei R, Zhang J, Xiao G (2018) 3D-monoclinic M-BTC MOF (M = Mn Co, Ni) as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. J Ind Eng Chem 58:296–303

    Article  CAS  Google Scholar 

  46. Zhang X, Chen Z, Yang X, Li M, Chen C, Zhang N (2018) The fixation of carbon dioxide with epoxides catalyzed by cation-exchanged metal-organic framework. Microporous Mesoporous Mat 258:55–61

    Article  CAS  Google Scholar 

  47. Zhang Y, Tan Z, Liu B, Mao D, Xiong C (2015) Coconut shell activated carbon tethered ionic liquids for continuous cycloaddition of CO2 to epichlorohydrin in packed bed reactor. Catal Commun 68:73–76

    Article  CAS  Google Scholar 

  48. Sogukomerogullari HG, Aytar E, Ulusoy M, Demir S, Dege N, Richeson DS, Sönmez M (2018) Synthesis of complexes Fe, Co and Cu supported by “SNS” pincer ligands and their ability to catalytically form cyclic carbonates. Inorg Chim Acta 471:290–296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior – Brasil (CAPES) – Finance Code 001. SE thanks CNPq for research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Einloft.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, M.O., Monteiro, W.F., Neto, B.S. et al. Chemical fixation of CO2: the influence of linear amphiphilic anions on surface active ionic liquids (SAILs) as catalysts for synthesis of cyclic carbonates under solvent-free conditions. Reac Kinet Mech Cat 126, 987–1001 (2019). https://doi.org/10.1007/s11144-019-01544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01544-6

Keywords

Navigation