Skip to main content
Log in

Impact of chloride ions on the oxidative coupling of methane over Li/SnO2 catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic performance for the oxidative coupling of methane (OCM) over chloride-containing Li/SnO2 was investigated experimentally and the mechanism of OCM was further suggested. Cl ions exerted remarkable influence on the catalytic performance of Li/SnO2, with that at 750 °C displaying the highest catalytic activity (18.5% C2 yield) for OCM. The prepared catalysts were characterized with N2 physisorption, X-ray diffraction, O2-temperature programmed desorption, X-ray photoelectron spectroscopy and H2 temperature programmed reduction measurement to elucidate the effect of Cl ions on its properties and catalytic performance. The results showed that the enhanced OCM catalytic activity of the chloride-containing Li/SnO2 catalysts compared with pure Li/SnO2 catalyst may originate from the higher concentration of anion vacancies, more rapid oxygen mobility and improved redox ability of tin. In addition, characterization by CO2-temperature programmed desorption, infrared spectroscopy and O2 frequency pulse reactions results illustrated that adding Cl ions improved performance of Li/SnO2, which not only reduced strong basic sites to prevent the formation of poisoning carbonate, but also facilitated the formed chloromethane to convert quickly to ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Keller GE, Bhasin MM (1982) J Catal 73:9–19

    Article  CAS  Google Scholar 

  2. Lee J, Oyama S (1988) Catal Rev 30:249–280

    Article  CAS  Google Scholar 

  3. Palermo A, Vazquez JPH, Lee A, Tikhov M, Lambert R (1998) J Catal 177:259–266

    Article  CAS  Google Scholar 

  4. Machocki A, Jezior R (2008) Chem Eng J 137:643–652

    Article  CAS  Google Scholar 

  5. Zheng W, Cheng DG, Chen FQ, Zhan XL (2010) J Nat Gas Chem 19:515–521

    Article  CAS  Google Scholar 

  6. Park JH, Lee DW, Im SW, Lee YH, Suh DJ, Jun KW, Lee KY (2012) Fuel 94:433–439

    Article  CAS  Google Scholar 

  7. Uzunoglu C, Leba A, Yildirim R (2017) Appl Catal A 547:22–29

    Article  CAS  Google Scholar 

  8. Shubin A, Zilberberg I, Ismagilov I, Matus E, Kerzhentsev M, Ismagilov Z (2018) Mol Catal 445:307–315

    Article  CAS  Google Scholar 

  9. Wang DZ, Wen SL, Chen J, Zhang SY, Li FQ (1994) Phys Rev B 49:14282–14285

    Article  Google Scholar 

  10. Xie J, Chen L, Au CT, Yin SF (2015) Catal Commun 66:30–33

    Article  CAS  Google Scholar 

  11. Goudarzi F, Izadbakhsh A (2017) Reac Kinet Mech Cat 121:539–553

    Article  CAS  Google Scholar 

  12. Rorf J, Roos JA, Vertman LJ, Vanommen JG (1989) Appl Catal 56:119–135

    Article  Google Scholar 

  13. Nibbelke RH, Scheerova J, Decroon MHJN, Marin GB (2010) J Catal 156:106–119

    Article  Google Scholar 

  14. Lunsford JH, Hinson PG, Rosynek MP, Shi CL, Xu MT, Yang XM (1994) J Catal 147:301–310

    Article  CAS  Google Scholar 

  15. Raouf F, Taghizadeh M, Yousefi M (2013) Reac Kinet Mech Cat 110:373–385

    Article  CAS  Google Scholar 

  16. Wang DJ, Rosynek MP, Lunsford JH (1995) J Catal 151:155–167

    Article  CAS  Google Scholar 

  17. Hong JH, Yoon KJ (2001) Appl Catal A 205:253–262

    Article  CAS  Google Scholar 

  18. Hiyoshi N, Ikeda T (2015) Fuel Process Technol 133:29–34

    Article  CAS  Google Scholar 

  19. Wang Y, Arandiyan H, Tahini HA, Scott J, Tan X, Dai HX, Gale JD, Rohl AL, Smith SC, Amal R (2017) Nat Commun 8:1–7

    Article  Google Scholar 

  20. Song JJ, Sun YN, Ba RB, Huang SS, Zhao YH, Zhang J, Sun YH, Zhu Y (2015) Nanoscale 7:2260–2264

    Article  CAS  Google Scholar 

  21. Choudhary VR, Rane VH (1994) J Chem Soc Faraday Trans 90:3357–3365

    Article  CAS  Google Scholar 

  22. Kus S, Otremba M, Taniewski M (2003) Fuel 82:1331–1338

    Article  CAS  Google Scholar 

  23. Hou YH, Han WC, Xia WS, Wan HL (2015) ACS Catal 5:1663–1674

    Article  CAS  Google Scholar 

  24. Voskresenskaya EN, Roguleva VG, Anshits AG (1995) Catal Rev Sci Eng 37:101–143

    Article  CAS  Google Scholar 

  25. Arandiyan H, Dai HX, Deng JG, Wang Y, Sun HY, Xie SH, Bai BY, Liu YX, Ji KM, Li JH (2014) J Phys Chem C 118:14913–14928

    Article  CAS  Google Scholar 

  26. Arandiyan H, Scott J, Wang Y, Dai HX, Sun HY, Amal R (2016) ACS Appl Mater Interfaces 8:2457–2463

    Article  CAS  Google Scholar 

  27. Wang X, Liu D, Li J, Zhen J, Zhang H (2015) NPG Asia Mater 7:e158

    Article  CAS  Google Scholar 

  28. Chen J, Arandiyan H, Gao X, Li J (2015) Catal Surv Asia 19:140–171

    Article  CAS  Google Scholar 

  29. Long RQ, Wan HL (1997) Appl Catal A 159:45–58

    Article  CAS  Google Scholar 

  30. Huang P, Zhao YH, Zhang J, Zhu Y, Sun Y (2013) Nanoscale 5:10844–10848

    Article  CAS  Google Scholar 

  31. Ding WP, Ding WP, Chen Y, Fu XC (1994) Catal Lett 23:69–78

    Article  CAS  Google Scholar 

  32. Ferreira VJ, Tavares P, Figueiredo JL, Faria JL (2013) Catal Commun 42:50–53

    Article  CAS  Google Scholar 

  33. Kang M, Park ED, Kim JM, Yie JE (2007) Appl Catal A 327:261–269

    Article  CAS  Google Scholar 

  34. Peng XD, Richards DA, Stair PC (1990) J Catal 121:99–109

    Article  CAS  Google Scholar 

  35. Lee MR, Park MJ, Jeon W, Choi JW, Suh YW, Suh DJ (2012) Fuel Process Technol 96:175–182

    Article  CAS  Google Scholar 

  36. Sun J, Thybaut JW, Marin GB (2008) Catal Today 137:90–102

    Article  CAS  Google Scholar 

  37. Fleischer V, Steuer R, Parishan S, Schomäcker R (2016) J Catal 341:91–103

    Article  CAS  Google Scholar 

  38. Andersen PJ, Kung HH (1992) J Phys Chem 96:3114–3123

    Article  CAS  Google Scholar 

  39. Delavari S, Amin NAS, Mazaheri H (2014) Reac Kinet Mech Cat 113:557–573

    Article  CAS  Google Scholar 

  40. Osada Y, Koike S, Fukushima T, Ogasawara S (1990) Appl Catal 59:59–74

    Article  CAS  Google Scholar 

  41. Dai HX, Ng CF, Au CT (1999) Catal Lett 57:115–120

    Article  CAS  Google Scholar 

  42. Stranick MA, Moskwa A (1993) Surf Sci Spectra 2:45–49

    Article  CAS  Google Scholar 

  43. Klingenberg B, Vannice MA (1996) Chem Mater 8:2755–2768

    Article  CAS  Google Scholar 

  44. Aika K, Moriyama T, Takasaki N, Iwamatsu E (1986) J Chem Soc Chem Commun 18:1210–1211

    Article  Google Scholar 

  45. Xu XL, Liu F, Han X, Wu YY, Liu WM, Zhang RB, Zhang N, Wang X (2016) Catal Sci Technol 6:5280–5291

    Article  CAS  Google Scholar 

  46. Sun GB, Hidajat K, Wu XS, Kawi S (2008) Appl Catal B 81:303–312

    Article  CAS  Google Scholar 

  47. Wu X, Kawi S (2009) Catal Today 148:251–259

    Article  CAS  Google Scholar 

  48. Wu X, Kawi S (2010) Cryst Growth Des 10:1833–1841

    Article  CAS  Google Scholar 

  49. Shiow SL, Chun LC, Dong JC, Chia CC (2002) Water Res 36:3009–3014

    Article  Google Scholar 

  50. Rani RS, Lakshmanan A (2016) J Lumin 174:63–69

    Article  CAS  Google Scholar 

  51. Ohtsuka Y, Kuwabara M, Tomita A (1989) Appl Catal 47:307–315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA09030101) and the Petro China Innovation Foundation (No. 2016D-5007-0506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjun Chou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., Yang, J., Yan, L. et al. Impact of chloride ions on the oxidative coupling of methane over Li/SnO2 catalyst. Reac Kinet Mech Cat 125, 675–688 (2018). https://doi.org/10.1007/s11144-018-1477-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1477-y

Keywords

Navigation