Skip to main content
Log in

Solution of bivariate aggregation population balance equation: a comparative study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present work shows a comparative study of two different numerical methods for solving bivariate aggregation population balance equations. In particular, we summarize the cell average technique (Kumar et al. in Comput Chem Eng 32(8):1810–1830, 2008) and the finite volume scheme (Singh et al. in J Comput Appl Math 308:83–97, 2016) for solving pure aggregation population balance equation. The qualitative and quantitative numerical results of various order moments and number density functions are compared with the exact results for analytically tractable kernels. The results reveal that the finite volume scheme approximates the results more accurately and efficiently as compared to the cell average technique. With respect to mixed moments, in particular, the total variance of excess solute (Matsoukas et al. in AIChE J 52(9):3088–3099, 2006), the finite volume scheme is superior to the cell average technique. Additionally, it is also shown that bicomponent moments are more sensitive to the selection of the grid and require finer discretization to reduce errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Attarakih MM, Jaradat M, Drumm C, Bart HJ, Tiwari S, Sharma VK, Kuhnert J, Klar A (2010) A multivariate sectional quadrature method of moments for the solution of the population balance equation. Comput Aided Chem Eng 28:1551–1556

    CAS  Google Scholar 

  2. Bridgwater J (1995) Particle technology. Chem Eng Sci 50(24):4081–4089

    Article  CAS  Google Scholar 

  3. Chakraborty J, Kumar S (2007) A new framework for solution of multidimensional population balance equations. Chem Eng Sci 62(15):4112–4125

    Article  CAS  Google Scholar 

  4. Chauhan S, Chakraborty J, Kumar S (2010) On the solution and applicability of bivariate population balance equations for mixing in particle phase. Chem Eng Sci 65(13):3914–3927

    Article  CAS  Google Scholar 

  5. Cheng JC, Vigil R, Fox R (2010) A competitive aggregation model for flash nanoprecipitation. J Colloid Interface Sci 351(2):330–342

    Article  CAS  Google Scholar 

  6. Favero J, Lage P (2012) The dual-quadrature method of generalized moments using automatic integration packages. Comput Chem Eng 38:1–10

    Article  CAS  Google Scholar 

  7. Fernández-Díaz J, Gómez-García G (2007) Exact solution of smoluchowski’s continuous multi-component equation with an additive kernel. Europhys Lett 78:56002

    Article  Google Scholar 

  8. Forestier-Coste L, Mancini S (2012) A finite volume preserving scheme on nonuniform meshes and for multidimensional coalescence. SIAM J Sci Comput 34(6):B840–B860

    Article  Google Scholar 

  9. Ganesan S, Tobiska L (2012) An operator-splitting finite element method for the efficient parallel solution of multidimensional population balance systems. Chem Eng Sci 69(1):59–68

    Article  CAS  Google Scholar 

  10. Gelbard F, Seinfeld J (1980) Simulation of multicomponent aerosol dynamics. J Colloid Interface Sci 78(2):485–501

    Article  CAS  Google Scholar 

  11. John V, Mitkova T, Roland M, Sundmacher K, Tobiska L, Voigt A (2009) Simulations of population balance systems with one internal coordinate using finite element methods. Chem Eng Sci 64(4):733–741

    Article  CAS  Google Scholar 

  12. Kumar J, Peglow M, Warnecke G, Heinrich S (2008) The cell average technique for solving multi-dimensional aggregation population balance equations. Comput Chem Eng 32(8):1810–1830

    Article  CAS  Google Scholar 

  13. Kumar R, Kumar J, Warnecke G (2011) Numerical methods for solving two-dimensional aggregation population balance equations. Comput Chem Eng 35(6):999–1009

    Article  CAS  Google Scholar 

  14. Lee K, Kim T, Rajniak P, Matsoukas T (2008) Compositional distributions in multicomponent aggregation. Chem Eng Sci 63(5):1293–1303

    Article  CAS  Google Scholar 

  15. Leyvraz F (2003) Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys Rep 383(2):95–212

    Article  CAS  Google Scholar 

  16. Lushnikov A (2004) From sol to gel exactly. Phys Rev Lett 93(19):198302

    Article  CAS  Google Scholar 

  17. Mantzaris NV, Daoutidis P, Srienc F (2001) Numerical solution of multi-variable cell population balance models: I. Finite difference methods. Comput Chem Eng 25(11):1411–1440

    Article  CAS  Google Scholar 

  18. Marchisio DL, Fox RO (2005) Solution of population balance equations using the direct quadrature method of moments. J Aerosol Sci 36(1):43–73

    Article  CAS  Google Scholar 

  19. Marchisio DL, Vigil RD, Fox RO (2003) Quadrature method of moments for aggregation-breakage processes. J Colloid Interface Sci 258(2):322–334

    Article  CAS  Google Scholar 

  20. Matsoukas T, Kim T, Lee K (2009) Bicomponent aggregation with composition-dependent rates and the approach to well-mixed state. Chem Eng Sci 64(4):787–799

    Article  CAS  Google Scholar 

  21. Matsoukas T, Lee K, Kim T (2006) Mixing of components in two-component aggregation. AIChE J 52(9):3088–3099

    Article  CAS  Google Scholar 

  22. Matsoukas T, Marshall C Jr (2010) Bicomponent aggregation in finite systems. EPL 92(4):46007

    Article  Google Scholar 

  23. Nandanwar M, Kumar S (2008) A new discretization of space for the solution of multi-dimensional population balance equations. Chem Eng Sci 63(8):2198–2210

    Article  CAS  Google Scholar 

  24. Qamar S, Warnecke G (2007) Solving population balance equations for two-component aggregation by a finite volume scheme. Chem Eng Sci 62(3):679–693

    Article  CAS  Google Scholar 

  25. Ramkrishna D (2000) Population balances: theory and applications to particulate systems in engineering. Academic Press, New York

    Google Scholar 

  26. Rhodes MJ (2008) Introduction to particle technology. Wiley, New York

    Book  Google Scholar 

  27. Rigopoulos S, Jones A (2003) Finite-element scheme for solution of the dynamic population balance equation. AIChE J 49(5):1127–1139

    Article  CAS  Google Scholar 

  28. Singh M, Chakraborty J, Kumar J, Ramakanth R (2013) Accurate and efficient solution of bivariate population balance equations using unstructured grids. Chem Eng Sci 93:1–10

    Article  CAS  Google Scholar 

  29. Singh M, Ghosh D, Kumar J (2014) A comparative study of different discretizations for solving bivariate aggregation population balance equation. Appl Math Comput 234:434–451

    Google Scholar 

  30. Singh M, Kumar J, Bück A, Tsotsas E (2016) An improved and efficient finite volume scheme for bivariate aggregation population balance equation. J Comput Appl Math 308:83–97

    Article  Google Scholar 

  31. Vale H, McKenna T (2005) Solution of the population balance equation for two-component aggregation by an extended fixed pivot technique. Ind Eng Chem Res 44(20):7885–7891

    Article  CAS  Google Scholar 

  32. von Smoluchowski M (1906) Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Annn Phys 21:757–779

    Google Scholar 

Download references

Funding

Funding was provided by IMPAKT Project (Grant No. IT16DM0434) to Gurmeet Kaur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehakpreet Singh.

Appendix

Appendix

Size-independent Kernel

The different exact results for the various initial conditions using size-independent kernel are provided by Gelbard and Seinfeld [10]. For the initial condition, \(f(0,u,v)=\frac{16 N_0uv}{{m_{10}^2}{{m_{20}^2}}} \exp \Big [-\frac{2u}{m_{10}} -\frac{2v}{m_{20}}\Big ]\), the exact solution is summarized in the following Table 3.

Table 3 Exact solution for size-independent kernel

Size-dependent Kernel

Fernández-Díaz and Gómez-García [7] has provided different exact solutions corresponding to various initial condition for size-dependent kernel. Here, we have listed for the initial condition, i.e., \(f(0,u,v)=\frac{16 N_0uv}{{m_{10}^2}{{m_{20}^2}}} \exp \Big [-\frac{2u}{m_{10}} -\frac{2v}{m_{20}}\Big ]\) in Table 4.

Table 4 Exact solution for size-dependent kernel

Mass conservation

Proposition The finite volume formulation provided in (11) does not conserve the total mass of the system.

Proof Multiply the formulation provided in Eq. (11) by \((u_{p}+y_{q})\Delta u_{p} \Delta v_{q}\) both side and take sum over all p and q. The left hand side gives the first moment at time \(t^{n+1}\) and the right hand side can be simplified as

$$\begin{aligned} \sum _{p=1}^{I_1}\sum _{q=1}^{I_2} f_{p,q}^{n+1} (u_{p}+v_{q})\Delta u_{p} \Delta v_{q} = \sum _{p=1}^{I_1}\sum _{q=1}^{I_2} f_{p,q}^{n} (u_{p}+v_{q})\Delta u_{p} \Delta v_{q} + \Delta t^n {T} , \end{aligned}$$

where T is given by the following expression:

$$\begin{aligned} {T} = \sum _{p=1}^{I_1}\sum _{q=1}^{I_2} \Big (&\frac{1}{2} \sum _{(p,r,q, s) \in {\mathcal{L}}^{i,j}}\beta _{p,r,q, s}^{n}f_{p,q}^{n}f_{r,s}^{n}{\Delta u_{p}\Delta v_{q}\Delta u_{r}\Delta v_{s}}(u_{p}+v_{q}) \\&-\sum _{{p}=1}^{I_1}\sum _{{q}=1}^{I_2}\beta _{p,r,q, s}^{n}f_{i,j}^{n}f_{p,q}^{n}\Delta u_{p}\Delta v_{q}\Big ). \end{aligned}$$
(17)

For proving the mass conservation property, it is required to show that \(T = 0\) for all times. But, it can be noticed that the two expressions on the right hand side of the above equations are not same. Hence, the mass conservation property does not hold for this formulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Kaur, G., De Beer, T. et al. Solution of bivariate aggregation population balance equation: a comparative study. Reac Kinet Mech Cat 123, 385–401 (2018). https://doi.org/10.1007/s11144-018-1345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1345-9

Keywords

Navigation