Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 1, pp 171–185 | Cite as

Correlation between the porosity of γ-Al2O3 and the performance of CuO–ZnO–Al2O3 catalysts for CO2 hydrogenation into methanol

  • Nguyen Le-PhucEmail author
  • Tri Van Tran
  • Phuong Ngo Thuy
  • Luong Huu Nguyen
  • Thuat Thanh Trinh
Article

Abstract

The influence of the porosity of γ-Al2O3 on the performance of CuO–ZnO–Al2O3 catalysts for methanol synthesis from H2 + CO2 mixture was studied. Various types of γ-Al2O3 with different surface areas (from 130 to 280 m2/g) and pore sizes (from 3 to 11 nm) were investigated. N2 adsorption, XRD, TPR studies and grand canonical Monte Carlo simulation were utilized to determine the correlation between their physico-chemical properties and catalytic performance. It was shown that the crystallite size of CuO (determined by XRD) and BET surface area of supports are not the key factors for methanol productivity. The TPR profiles of catalysts demonstrated a direct relationship between CuO–ZnO interaction with their catalytic performance. Interestingly, samples with the uniform pore size of 5 nm exhibit a higher CuO–ZnO interaction and the highest methanol yield. In addition, at this pore size, simulation results showed that the ratio of H2 and CO2 inside the γ-Al2O3 pore was 1.5, which could be an appropriate feed ratio for high methanol productivity.

Keywords

CO2 hydrogenation γ-Al2O3 CuO–ZnO interaction TPR Pore size distribution Monte Carlo 

Notes

Acknowledgement

This work was carried out at PVPro, VPI and supported by Vietnam National Oil and Gas Group (03/NCCB(PVPro)/2012/HĐ-NCKH) and the Ministry of Industry and Trade of Vietnam (DT.03.12/NLSH).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Höök M, Tang X (2013) Energy Policy 52:797–809CrossRefGoogle Scholar
  2. 2.
    Heede R, Oreskes N (2016) Glob Environ Chang 36:12–20CrossRefGoogle Scholar
  3. 3.
    Marcos FCF, Assaf JM, Assaf EM (2017) Catal Today 289:173–180CrossRefGoogle Scholar
  4. 4.
    Porosoff MD, Yan B, Chen JG (2016) Energy Environ Sci 9:62–73CrossRefGoogle Scholar
  5. 5.
    Ihm SK, Park YK, Jeon JK, Park KC, Lee DK (1998) Stud Surf Sci Catal 114:505–508CrossRefGoogle Scholar
  6. 6.
    Behrens M (2014) Angew Chem Int Ed 53:12022–12024CrossRefGoogle Scholar
  7. 7.
    Meshkini F, Taghizadeh M, Bahmani M (2010) Fuel 89:170–175CrossRefGoogle Scholar
  8. 8.
    Olah GA, Prakash GKS, Goeppert A (2011) J Am Chem Soc 133:12881–12898CrossRefGoogle Scholar
  9. 9.
    Zangeneh FT, Sahebdelfar S, Ravanchi MT (2011) J Nat Gas Chem 20:219–231CrossRefGoogle Scholar
  10. 10.
    Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Chem Eng Res Des 92:2557–2567CrossRefGoogle Scholar
  11. 11.
    Arena F, Mezzatesta G, Zafarana G, Trunfio G, Frusteri F, Spadaro L (2013) J Catal 300:141–151CrossRefGoogle Scholar
  12. 12.
    Fujita S, Moribe S, Kanamori Y, Kakudate M, Takezawa N (2001) Appl Catal A 207:121–128CrossRefGoogle Scholar
  13. 13.
    Guo XJ, Li LM, Liu SM, Bao GL, Hou WH (2007) J Fuel Chem Technol 35:329–333CrossRefGoogle Scholar
  14. 14.
    Wu J, Saito M, Mabuse H (2000) Catal Lett 68:55–58CrossRefGoogle Scholar
  15. 15.
    Lei H, Hou Z, Xie J (2016) Fuel 164:191–198CrossRefGoogle Scholar
  16. 16.
    Fujitani T, Nakamura J (1998) Catal Lett 56:119–124CrossRefGoogle Scholar
  17. 17.
    Choi Y, Futagami K, Fujitani T, Nakamura J (2001) Appl Catal A 208:163–167CrossRefGoogle Scholar
  18. 18.
    Jansen WPA, Beckers J, vd Heuvel JC, vd Gon AD, Bliek A, Brongersma HH (2002) J Catal 210:229–236CrossRefGoogle Scholar
  19. 19.
    Grunwaldt JD, Molenbroek AM, Topsøe NY, Topsøe H, Clausen BS (2000) J Catal 194:452–460CrossRefGoogle Scholar
  20. 20.
    Phongamwong T, Chantaprasertporn U, Witoon T, Numpilai T, Poo-arporn Y, Limphirat W, Donphai W, Dittanet P, Chareonpanich M, Limtrakul J (2017) Chem Eng J 316:692–703CrossRefGoogle Scholar
  21. 21.
    Ahouari H, Soualah A, Le Valant A et al (2013) Reac Kinet Mech Cat 110:131–145CrossRefGoogle Scholar
  22. 22.
    Jeong H, Cho CH, Kim TH (2012) Reac Kinet Mech Cat 106:435–443CrossRefGoogle Scholar
  23. 23.
    Tursunov O, Kustov L, Tilyabaev Z (2017) J Taiwan Inst Chem Eng 78:416–422CrossRefGoogle Scholar
  24. 24.
    Ren H, Xu CH, Zhao HY, Wang YX, Liu J (2015) J Ind Eng Chem 28:261–267CrossRefGoogle Scholar
  25. 25.
    Donphai W, Piriyawate N, Witoon T, Jantaratana P, Varabuntoonvit V, Chareonpanich M (2016) J CO2 Util 16:204–211CrossRefGoogle Scholar
  26. 26.
    Karelovic A, Bargibant A, Fernández C, Ruiz P (2012) Catal Today 197:109–118CrossRefGoogle Scholar
  27. 27.
    Witoon T, Bumrungsalee S, Chareonpanich M, Limtrakul J (2015) Energy Convers Manag 103:886–894CrossRefGoogle Scholar
  28. 28.
    Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H (2002) J Catal 211:1–5CrossRefGoogle Scholar
  29. 29.
    Plimpton S, Crozier P, Thompson A (2007) LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories, AlbuquerqueGoogle Scholar
  30. 30.
    Potoff JJ, Siepmann JI (2001) AlChE J 47:1676–1682CrossRefGoogle Scholar
  31. 31.
    Cygan RT, Liang J-J, Kalinichev AG (2004) J Phys Chem B 108:1255–1266CrossRefGoogle Scholar
  32. 32.
    Trinh TT, Vlugt TJ, Hagg MB, Bedeaux D, Kjelstrup S (2013) Front Chem 1:38CrossRefGoogle Scholar
  33. 33.
    Yeh I-C, Lenhart JL, Rinderspacher BC (2015) J Phys Chem C 119:7721–7731CrossRefGoogle Scholar
  34. 34.
    Harris KDM, Tremayne M, Kariuki BM (2001) Angew Chem Int Ed 40:1626–1651CrossRefGoogle Scholar
  35. 35.
    McCusker LB, Von Dreele RB, Cox DE, Louer D, Scardi P (1999) J Appl Crystallogr 32:36–50CrossRefGoogle Scholar
  36. 36.
    Koizumi N, Jiang X, Kugai J, Song C (2012) Catal Today 194:16–24CrossRefGoogle Scholar
  37. 37.
    Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K (2008) Appl Catal A 337:48–57CrossRefGoogle Scholar
  38. 38.
    Fierro G, Jacono ML, Inversi M, Porta P, Cioci F, Lavecchia R (1996) Appl Catal A 137:327–348CrossRefGoogle Scholar
  39. 39.
    Bahmani M, Vasheghani Farahani B, Sahebdelfar S (2016) Appl Catal A 520:178–187CrossRefGoogle Scholar
  40. 40.
    Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR Jr, Howard BH, Deng X, Matranga C (2012) ACS Catal 2:1667–1676CrossRefGoogle Scholar
  41. 41.
    Saeidi S, Amin NAS, Rahimpour (2014) J. CO2 Util. 5:66–81CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Catalysis Research Department, PetroVietnam Research & Development Center for Petroleum Processing (PVPro)Vietnam Petroleum InstituteHo Chi Minh CityVietnam
  2. 2.Department of ChemistryNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations