Skip to main content
Log in

Catalytic properties of Cu–Mg–Al hydrotalcites, their oxides and reduced phases for ethanol dehydrogenation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Different phases of Cu–Mg–Al compounds, hydrotalcites, their oxides, and reduced phases were prepared by co-precipitation and evaluated using the ethanol reactions. The solids were characterized by surface area measurements, X-ray diffraction (XRD), thermogravimetry coupled with differential thermal analysis, H2-temperature-programmed reduction, CO2 temperature-programmed desorption and temperature-programmed oxidation. The catalytic runs were performed at temperatures ranging from 250 to 350 °C. Activation with H2 was previously carried out in situ at 300 °C for the reduced samples. The samples with higher amount of Cu presented high ethanol conversion independent of the phase evaluated. The characterization by XRD after the reaction revealed that all samples exhibited only the metallic phase of Cu, independent of the phase before the reaction. The high selectivity for dehydrogenation was responsible for the transformation of hydrotalcites and mixed oxides into metallic phase during the ethanol reaction. Samples with lower amounts of Cu were deactivated by carbon deposition whereas samples with higher amount of Cu were deactivated mainly by sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11(2):173–301

    Article  CAS  Google Scholar 

  2. Reichle WT (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ion 22(1):135–141

    Article  CAS  Google Scholar 

  3. Vaccari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41(1–3):53–71

    Article  CAS  Google Scholar 

  4. Ulibarri MA, Pavlovic I, Barriga C, Hermosín MC, Cornejo J (2001) Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity. Appl Clay Sci 18(1–2):17–27

    Article  CAS  Google Scholar 

  5. Zhao R, Yin C, Zhao H, Liu C (2003) Synthesis, characterization, and application of hydrotalcites in hydrodesulfurization of FCC gasoline. Fuel Process Technol 81:201–209

    Article  CAS  Google Scholar 

  6. Takehira K, Shishido T (2007) Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting “memory effect”. Catal Surv Asia 11(1–2):1–30

    Article  CAS  Google Scholar 

  7. Guo Y, Zhu Z, Qiu Y, Zhao J (2013) Enhanced adsorption of acid brown 14 dye on calcined Mg/Fe layered double hydroxide with memory effect. Chem Eng J 219:69–77

    Article  CAS  Google Scholar 

  8. Fan G, Li F, Evans DG, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43(20):7040–7066

    Article  CAS  Google Scholar 

  9. Delidovich I, Palkovits R (2015) Structure-performance correlations of Mg–Al hydrotalcite catalysts for the isomerization of glucose into fructose. J Catal 327:1–9

    Article  CAS  Google Scholar 

  10. Kubic D, Hájek M, Kutálek P, Smoláková L, Troppová I, Libor C (2015) Transesterification of rapeseed oil by Mg–Al mixed oxides with various Mg/Al molar ratio. Chem Eng J 263:160–167

    Article  Google Scholar 

  11. Yang W, Kim Y, Liu PKT, Sahimi M, Tsotsis TT (2002) A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide. Chem Eng Sci 57(15):2945–2953

    Article  CAS  Google Scholar 

  12. Rives V (2002) Characterisation of layered double hydroxides and their decomposition products. Mater Chem Phys 75:19–25

    Article  CAS  Google Scholar 

  13. Jabłońska M, Chmielarz L, Węgrzyn A, Guzik K, Piwowarska Z, Witkowski S, Walton RI, Dunne PW, Kovanda F (2013) Thermal transformations of Cu–Mg (Zn)–Al(Fe) hydrotalcite-like materials into metal oxide systems and their catalytic activity in selective oxidation of ammonia to dinitrogen. J Therm Anal Calorim 114:731–747

    Article  Google Scholar 

  14. Coleman LJI, Epling W, Hudgins RR, Croiset E (2009) Ni/Mg–Al mixed oxide catalyst for the steam reforming of ethanol. Appl Catal A 363(1–2):52–63

    Article  CAS  Google Scholar 

  15. Hammoud D, Gennequin C, Aboukaı A, Abi AE (2014) Steam reforming of methanol over x% Cu/Zn–Al 400 500 based catalysts for production of hydrogen: preparation by adopting memory effect of hydrotalcite and behavior evaluation. Int J Hydrog Energy 40:1283–1297

    Article  Google Scholar 

  16. González AR, Asencios YJO, Assaf EM, Assaf JM (2013) Dry reforming of methane on Ni–Mg–Al nano-spheroid oxide catalysts prepared by the sol–gel method from hydrotalcite-like precursors. Appl Surf Sci 280:876–887

    Article  Google Scholar 

  17. Tanasoi S, Tanchoux N, Urdǎ A, Tichit D, Sǎndulescu I, Fajula F, Marcu IC (2009) New Cu-based mixed oxides obtained from LDH precursors, catalysts for methane total oxidation. Appl Catal A 363(1–2):135–142

    Article  CAS  Google Scholar 

  18. Di Fronzo A, Pirola C, Comazzi A, Galli F, Bianchi CL, Di Michele A, Vivani R, Nocchetti M, Bastianini M, Boffito DC (2014) Co-based hydrotalcites as new catalysts for the Fischer–Tropsch synthesis process. Fuel 119:62–69

    Article  Google Scholar 

  19. Basag S, Kocol K, Piwowarska Z, Rutkowska M, Baran R, Chmielarz L (2017) Activating effect of cerium in hydrotalcite derived Cu–Mg–Al catalysts for selective ammonia oxidation and the selective reduction of NO with ammonia. Reac Kinet Mech Cat 121:225–240

    Article  CAS  Google Scholar 

  20. Carvalho DL, De Avillez RR, Rodrigues MT, Borges LEP, Appel LG (2012) Mg and Al mixed oxides and the synthesis of n-butanol from ethanol. Appl Catal A 415–416:96–100

    Article  Google Scholar 

  21. Baylon RAL, Sun J, Wang Y (2014) Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides. Catal Today 259:446–452

    Article  Google Scholar 

  22. Carotenuto G, Tesser R, Di Serio M, Santacesaria E (2013) Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst. Catal Today 203:202–210

    Article  CAS  Google Scholar 

  23. Rǎciulete M, Layrac G, Tichit D, Marcu IC (2014) Comparison of CuxZnAlO mixed oxide catalysts derived from multicationic and hybrid LDH precursors for methane total oxidation. Appl Catal A 477:195–204

    Article  Google Scholar 

  24. Hosoglu F, Faye J, Mareseanu K, Tesquet G, Miquel P, Capron M, Gardoll O, Lamonier JF, Lamonier C, Dumeignil F (2015) High resolution NMR unraveling Cu substitution of Mg in hydrotalcites-ethanol reactivity. Appl Catal A 504:533–541

    Article  CAS  Google Scholar 

  25. Kannan S, Dubey A, Knozinger H (2005) Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol. J Catal 231(2):381–392

    Article  CAS  Google Scholar 

  26. Inui K, Kurabayashi T, Sato S, Ichikawa N (2004) Effective formation of ethyl acetate from ethanol over Cu–Zn–Zr–Al–O catalyst. J Mol Catal A 216(1):147–156

    Article  CAS  Google Scholar 

  27. Varisli D, Dogu T, Dogu G (2007) Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts. Chem Eng 62(18–20):5349–5352

    Article  CAS  Google Scholar 

  28. Marcu IC, Tichit D, Fajula F, Tanchoux N (2009) Catalytic valorization of bioethanol over Cu–Mg–Al mixed oxide catalysts. Catal Today 147(3–4):231–238

    Article  CAS  Google Scholar 

  29. León M, Díaz E, Ordóñez S (2011) Ethanol catalytic condensation over Mg–Al mixed oxides derived from hydrotalcites. Catal Today 164(1):436–442

    Article  Google Scholar 

  30. Zonetti PC, Celnik J, Letichevsky S, Gaspar AB, Appel LG (2011) Chemicals from ethanol—the dehydrogenative route of the ethyl acetate one-pot synthesis. J Mol Catal A 334(1–2):29–34

    Article  CAS  Google Scholar 

  31. Gines MJL, Iglesia E (1998) Bifunctional condensation reactions of alcohols on basic oxides modified by copper and potassium. J Catal 172:155–172

    Article  Google Scholar 

  32. Phung TK, Busca G (2015) Diethyl ether cracking and ethanol dehydration: acid catalysis and reaction paths. Chem Eng J 272:92–101

    Article  CAS  Google Scholar 

  33. Perez-Lopez OW, Senger A, Marcilio NR, Lansarin MA (2006) Effect of composition and thermal pretreatment on properties of Ni–Mg–Al catalysts for CO2 reforming of methane. Appl Catal A 303:234–244

    Article  CAS  Google Scholar 

  34. Escobar C, Perez-Lopez OW (2014) Hydrogen production by methane decomposition over Cu–Co–Al mixed oxides activated under reaction conditions. Catal Lett 144:796–804

    Article  CAS  Google Scholar 

  35. Narasimharao K, Al-Sabban E, Saleh TS, Gallastegui AG, Sanfiz AC, Basahel S, Thabaiti A, Alyoubi A, Obaid A, Mokhtar M (2013) Microwave assisted efficient protocol for the classic Ullmann homocoupling reaction using Cu–Mg–Al hydrotalcite catalysts. J Mol Catal A 379:152–162

    Article  CAS  Google Scholar 

  36. Genty E, Brunet J, Pequeux R, Capelle S, Siffert S, Cousin R (2016) Effect of Ce substituted hydrotalcite-derived mixed oxides on total catalytic oxidation of air pollutant. Mater Today Proc 3(2):277–281

    Article  Google Scholar 

  37. Basag S, Piwowarska Z, Kowalczyk A, Wegrzyn A, Baran R, Gil B, Michalik M, Chmielarz L (2016) Cu–Mg–Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen—the influence of Mg/Al ratio and calcination temperature. Appl Clay Sci 129:122–130

    Article  CAS  Google Scholar 

  38. Palacio LA, Velásquez J, Echavarría A, Faro A, Ribeiro FR, Ribeiro MF (2010) Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts. J Hazard Mater 177:407–413

    Article  CAS  Google Scholar 

  39. Chmielarz L, Kuśtrowski P, Rafalska-Łasocha A, Majda D, Dziembaj R (2002) Catalytic activity of Co–Mg–Al, Cu–Mg–Al and Cu–Co–Mg–Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia. Appl Catal B 35(3):195–210

    Article  CAS  Google Scholar 

  40. Barrault J, Derouault A, Courtois G, Maissant JM, Dupin JC, Guimon C, Martinez H, Dumitriu E (2004) On the catalytic properties of mixed oxides obtained from the Cu–Mg–Al LDH precursors in the process of hydrogenation of the cinnamaldehyde. Appl Catal A 262(1):43–51

    Article  CAS  Google Scholar 

  41. Thouchprasitchai N, Luengnaruemitchai A, Pongstabodee S (2016) The activities of Cu-based Mg–Al layered double oxide catalysts in the water gas shift reaction. Int J Hydrog Energy 41(32):14147–14159

    Article  CAS  Google Scholar 

  42. Kovanda F, Jirátová K, Rymeš J, Koloušek D (2001) Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combustion. Appl Clay Sci 18(1–2):71–80

    Article  Google Scholar 

  43. Di Cosimo JI, Díez VK, Xu M, Inglesia E, Apesteguía CR (1998) Structure and surface and catalytic proprieties of Mg–Al basic oxides. J Catal 178:499–510

    Article  Google Scholar 

  44. Zeng Y, Zhang T, Xu Y, Ye T, Wang R, Yang Z, Jia Z, Ju S (2016) Cu/Mg/Al hydrotalcite-like hydroxide catalysts for o-phenylphenol synthesis. Appl Clay Sci 126:207–214

    Article  CAS  Google Scholar 

  45. Yuan Z, Wang L, Wang J, Xia S, Chen P, Hou Z, Zheng X (2011) Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl Catal B 101(3–4):431–440

    Article  CAS  Google Scholar 

  46. Freitas IC, Damyanova S, Oliveira DC, Marques CMP, Bueno JMC (2014) Effect of Cu content on the surface and catalytic properties of Cu/ZrO2 catalyst for ethanol dehydrogenation. J Mol Catal A 381:26–37

    Article  CAS  Google Scholar 

  47. Auer SM, Gredig SV, Koppel RA, Baiker A (1999) Synthesis of methylamines from CO2, H2 and NH3 over Cu–Mg–Al mixed oxides. J Mol Catal 141:193–203

    Article  CAS  Google Scholar 

  48. Hermes NA, Lansarin MA, Perez-Lopez OW (2011) Catalytic decomposition of methane over M–Co–Al catalysts (M = Mg, Ni, Zn, Cu). Catal Lett 141(7):1018–1025

    Article  CAS  Google Scholar 

  49. Berndt FM, Perez-Lopez OW (2017) Catalytic decomposition of methane over Ni/SiO2: influence of Cu addition. Reac Kinet Mech Cat 120(1):181–193

    Article  CAS  Google Scholar 

  50. Santacesaria E, Carotenuto G, Tesser R, Di Serio M (2012) Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts. Chem Eng J 179:209–220

    Article  CAS  Google Scholar 

  51. Thurgood CP, Amphlett JC, Mann RF, Peppley BA (2003) Deactivation of Cu/ZnO/Al2O3 catalyst: evolution of site concentrations with time. Top Catal 22:253–259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CAPES for the financial support granted to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar W. Perez-Lopez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosset, M., Perez-Lopez, O.W. Catalytic properties of Cu–Mg–Al hydrotalcites, their oxides and reduced phases for ethanol dehydrogenation. Reac Kinet Mech Cat 123, 689–705 (2018). https://doi.org/10.1007/s11144-017-1297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1297-5

Keywords

Navigation