Skip to main content
Log in

The accessibility of sites active in the dissociative adsorption of aromatic hydrocarbons in FeZSM-5 zeolite

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The competitive adsorption of aromatic hydrocarbons (benzene, methyl- and ethyl-benzene) and water on FeZSM-5 zeolites have been investigated by means of temperature-programmed desorption coupled with mass spectrometry (TPD/MS). The incorporation of iron in zeolite was done by aqueous ion exchange using dilute solutions of Fe complexes (ferric citrate and ferrous oxalate) and ferric nitrate. Diffuse reflectance UV–Vis spectroscopy and temperature-programmed reduction (TPR) were applied to characterize active sites on investigated zeolites. The existence of different iron species on FeZSM-5 zeolites was revealed. It has been demonstrated that the activity of the Fe exchanged zeolite depends on the iron salt used for ion exchange. The isolated, dispersed ions, which are often considered to be essential for adsorption and catalysis, were obtained with high yield only by ion exchange in the presence of ferrous oxalate. TPD/MS measurements show that aromatic hydrocarbons adsorb on specific, strong active sites in hydrated zeolites. The binding occurred when organic molecules replace water previously adsorbed at the same sites. Benzene showed non-dissociative adsorption/desorption, while new mass fragments were recorded during methyl-benzene and ethyl-benzene desorption implying their dissociative adsorption/desorption on active sites in hydrated zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khalid M, Joly G, Renaud A, Magnoux P (2004) Removal of phenol from water by adsorption using zeolites. Ind Eng Chem Res 43:5275–5280

    Article  CAS  Google Scholar 

  2. Pieterse J (2004) Evaluation of Fe-zeolite catalysts prepared by different methods for the decomposition of N2O. Appl Catal B Environ 51:215–228

    Article  CAS  Google Scholar 

  3. Gonzalez-Olmos R, Roland U, Toufar H, Kopinke F-D, Georgi A (2009) Fe-zeolites as catalysts for chemical oxidation of MTBE in water with H2O2. Appl Catal B Environ 89:356–364

    Article  CAS  Google Scholar 

  4. Kuznetsova EV, Savinov EN, Vostrikova LA, Parmon VN (2004) Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2. Appl Catal B Environ 51:165–170

    Article  CAS  Google Scholar 

  5. Starokon EV, Vedyagin AA, Pirutko LV, Mishakov IV (2015) Oxidation of CO and hydrocarbons with molecular oxygen over Fe–ZSM-5 zeolite. J Porous Mater 22:521–527

    Article  CAS  Google Scholar 

  6. Li X, Shen B, Xu C (2010) Interaction of titanium and iron oxide with ZSM-5 to tune the catalytic cracking of hydrocarbons. Appl Catal A Gen 375:222–229

    Article  CAS  Google Scholar 

  7. Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G (2007) Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts. Phys Chem Chem Phys 9:3483

    Article  CAS  Google Scholar 

  8. Schwidder M, Santhosh Kumar M, Klementiev K, Pohl MM, Brückner A, Grünert W (2005) Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content I. Relations between active site structure and catalytic performance. J Catal 231:314–330

    Article  CAS  Google Scholar 

  9. Santhosh Kumar M, Schwidder M, Grünert W, Brückner A (2004) On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: new insights by a combined EPR and UV/VIS spectroscopic approach. J Catal 227:384–397

    Article  Google Scholar 

  10. Guzmán-Vargas A, Delahay G, Coq B, Lima E, Bosch P, Jumas J-C (2005) Influence of the preparation method on the properties of Fe-ZSM-5 for the selective catalytic reduction of NO by n-decane. Catal Today 107–108:94–99

    Article  Google Scholar 

  11. Feng X, Hall KW (1997) FeZSM-5: a durable SCR catalyst for NOx removal from combustion streams. J Catal 166:368–376

    Article  CAS  Google Scholar 

  12. Nechita M-T, Berlier G, Ricchiardi G, Bordiga S, Zecchina A (2005) New precursor for the post-synthesis preparation of Fe-ZSM-5 zeolites with low iron content. Catal Lett 103:33–41

    Article  CAS  Google Scholar 

  13. Rivallan M, Berlier G, Ricchiardi G, Zecchina A, Nechita M-T, Olsbye U (2008) Characterisation and catalytic activity in de-NOx reactions of Fe-ZSM-5 zeolites prepared via ferric oxalate precursor. Appl Catal B Environ 84:204–213

    Article  CAS  Google Scholar 

  14. Malka-Edery A, Abdallah K, Grenier P, Meunier F (2001) Influence of traces of water on adsorption and diffusion of hydrocarbons in NaX zeolite. Adsorption 7:17–25

    Article  CAS  Google Scholar 

  15. Hunger B, Matysik S, Heuchel M, Einicke W-D (2001) Adsorption of water and methanol on a NaZSM-5 zeolite. A temperature-programmed desorption (TPD) study. J Therm Anal Calorim 64:1183–1190

    Article  CAS  Google Scholar 

  16. Temerev VL, Vedyagin AA, Afonasenko TN, Iost KN, Kotolevich YS, Baltakhinov VP, Tsyrulnikov PG (2016) Effect of Ag loading on the adsorption/desorption properties of ZSM-5 towards toluene. React Kinet Mech Catal 119:629–640

    Article  CAS  Google Scholar 

  17. Gallot JE, Fu H, Kapoor MP, Kaliaguine S (1996) Kinetic modeling ofn-hexane oxyfunctionalization by hydrogen peroxide on titanium silicalites of MEL structure (TS-2). J Catal 161:798–809

    Article  CAS  Google Scholar 

  18. Dondur V, Rakić V, Damjanović Lj, Hercigonja R, Auroux A (2006) Temperature-programmed desorption of n-hexane from hydrated HZSM-5 and NH4ZSM-5 zeolites. J Therm Anal Calorim 84:233–238

    Article  CAS  Google Scholar 

  19. Dondur V, Rakić V, Damjanović Lj, Auroux A (2005) Comparative study of the active sites in zeolites by different probe molecules. J Serbian Chem Soc 70:457–474

    Article  CAS  Google Scholar 

  20. Rac V, Rakić V, Gajinov S, Dondur V, Auroux A (2006) Room-temperature interaction of n-hexane with ZSM-5 zeolites. J Therm Anal Calorim 84:239–245

    Article  CAS  Google Scholar 

  21. Baertsch CD, Funke HH, Falconer JL, Noble RD (1996) Permeation of aromatic hydrocarbon vapors through silicalite–zeolite membranes. J Phys Chem 100:7676–7679

    Article  CAS  Google Scholar 

  22. Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279:257–268

    Article  CAS  Google Scholar 

  23. Park J-H, Choung J-H, Nam I-S, Ham S-W (2008) N2O decomposition over wet- and solid-exchanged Fe-ZSM-5 catalysts. Appl Catal B Environ 78:342–354

    Article  CAS  Google Scholar 

  24. Milojević M, Dondur V, Damjanović Lj, Rakić V, Rajić N, Ristić A (2007) The activity of iron-containing zeolitic materials for the catalytic oxidation in aqueous solutions. Mater Sci Forum 555:213–218

    Article  Google Scholar 

  25. Cornu A, Massot R (1975) Index de spectres de masse, vol 2. Heyden, London

    Google Scholar 

  26. Santhosh Kumar M, Schwidder M, Grünert W, Bentrup U, Brückner A (2006) Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Part II. Assessing the function of different Fe sites by spectroscopic in situ studies. J Catal 239:173–186

    Article  CAS  Google Scholar 

  27. Čapek L, Kreibich V, Dědeček J, Grygar T, Wichterlová B, Sobalík Z, Martens JA, Brosius R, Tokarová V (2005) Analysis of Fe species in zeolites by UV–VIS–NIR, IR spectra and voltammetry. Effect of preparation, Fe loading and zeolite type. Microporous Mesoporous Mater 80:279–289

    Article  Google Scholar 

  28. Sun K, Fan F, Xia H, Feng Z, Li W-X, Li C (2008) Framework Fe ions in Fe-ZSM-5 zeolite studied by UV resonance raman spectroscopy and density functional theory calculations. J Phys Chem C 112:16036–16041

    Article  CAS  Google Scholar 

  29. Melero JA, Calleja G, Martinez F, Molina R, Lázár K (2004) Crystallization mechanism of Fe-MFI from wetness impregnated Fe2O3–SiO2 amorphous xerogels: role of iron species in Fenton-like processes. Microporous Mesoporous Mater 74:11–21

    Article  CAS  Google Scholar 

  30. Guo Q, Chen B, Li Y, Li J (2008) The effect of different active sites on the catalytic activity of Fe-ZSM-5 zeolite for N2O direct decomposition. Catal Lett 120:65–70

    Article  CAS  Google Scholar 

  31. Melián-Cabrera I, Kapteijn F, Moulijn JA (2005) Innovations in the synthesis of Fe-(exchanged)-zeolites. Catal Today 110:255–263

    Article  Google Scholar 

  32. Lobree LJ, Hwang I-C, Reimer JA, Bell AT (1999) Investigations of the state of Fe in H-ZSM-5. J Catal 186:242–253

    Article  CAS  Google Scholar 

  33. Melián-Cabrera I, Espinosa S, Groen J, Linden B, Kapteijn F, Moulijn J (2006) Utilizing full-exchange capacity of zeolites by alkaline leaching: preparation of Fe-ZSM5 and application in N2O decomposition. J Catal 238:250–259

    Article  Google Scholar 

  34. Jacobs PA (1977) Carboniogenic activity of zeolites. Elsevier, New York

    Google Scholar 

  35. Dondur V, Karge HG (1987) Functions of energy distributions of acid sites on HY zeolite. Surf Sci 189–190:873–879

    Article  Google Scholar 

  36. Karge HG, Dondur V, Weitkamp J (1991) Investigation of the distribution of acidity strength in zeolites by temperature-programmed desorption of probe molecules. 2. Dealuminated Y-type zeolites. J Phys Chem 95:283–288

    Article  CAS  Google Scholar 

  37. Huang Y, Wang H (2003) An investigation of the conformational behavior of n-hexane adsorbed in zeolites by FT-Raman Spectroscopy. Langmuir 19:9706–9713

    Article  CAS  Google Scholar 

  38. Yoshimoto R, Hara K, Okumura K, Katada N, Niwa M (2007) Analysis of toluene adsorption on Na-form zeolite with a temperature-programmed desorption method. J Phys Chem C 111:1474–1479

    Article  CAS  Google Scholar 

  39. Al-Khattaf S, Tukur NM, Rabiu S (2009) Ethylbenzene transformation over a ZSM-5-based catalyst in a riser simulator. Ind Eng Chem Res 48:2836–2843

    Article  CAS  Google Scholar 

  40. Xu C-H, Jin T, Jhung SH, Chang J-S, Hwang J-S, Park S-E (2006) Hydrophobicity and catalytic properties of Ti-MFI zeolites synthesized by microwave and conventional heating. Catal Today 111:366–372

    Article  CAS  Google Scholar 

  41. Gun’ko VM (2007) Competitive adsorption. Theor Exp Chem 43:139–183

    Article  Google Scholar 

  42. Mukti RR, Jentys A, Lercher JA (2007) Orientation of alkyl-substituted aromatic molecules during sorption in the pores of H/ZSM-5 zeolites. J Phys Chem C 111:3973–3980

    Article  CAS  Google Scholar 

  43. Jungsuttiwong S, Limtrakul J, Truong TN (2005) Theoretical study of modes of adsorption of water dimer on H-ZSM-5 and H-Faujasite zeolites. J Phys Chem B 109:13342–13351

    Article  CAS  Google Scholar 

  44. Pope CG (1987) Water adsorption on ZSM-5 and its aluminum free analog, silicalite. J Colloid Interface Sci 116:221–223

    Article  CAS  Google Scholar 

  45. Díaz E, Ordóñez S, Vega A, Auroux A, Coca J (2005) Benzylation of benzene over Fe-modified ZSM-5 zeolites: correlation between activity and adsorption properties. Appl Catal A Gen 295:106–115

    Article  Google Scholar 

  46. Rungsirisakun R, Jansang B, Pantu P, Limtrakul J (2005) The adsorption of benzene on industrially important nanostructured catalysts (H-BEA, H-ZSM-5, and H-FAU): confinement effects. J Mol Struct 733:239–246

    Article  CAS  Google Scholar 

  47. Hansen N, Kerber T, Sauer J, Bell AT, Keil FJ (2010) Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2: DFT study. J Am Chem Soc 132:11525–11538

    Article  CAS  Google Scholar 

  48. Elangovan SP, Ogura M, Davis ME, Okubo T (2004) SSZ-33: a promising material for use as a hydrocarbon trap. J Phys Chem B 108:13059–13061

    Article  CAS  Google Scholar 

  49. Liu X, Lampert JK, Arendarskiia DA, Farrauto RJ (2001) FT-IR spectroscopic studies of hydrocarbon trapping in Ag+-ZSM-5 for gasoline engines under cold-start conditions. Appl Catal B Environ 35:125–136

    Article  CAS  Google Scholar 

  50. Lampert JK, Deeba M, Farrauto RJ (2000) Catalyzed hydrocarbon trap material and method of making the same. US Patent 6,074,973 A

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by Ministry of Science, Republic of Serbia within the framework of project 172018. The authors are grateful to technical service of IRCELYON for UV–Vis measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Milojević-Rakić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milojević-Rakić, M., Dondur, V., Damjanović-Vasilić, L. et al. The accessibility of sites active in the dissociative adsorption of aromatic hydrocarbons in FeZSM-5 zeolite. Reac Kinet Mech Cat 123, 231–246 (2018). https://doi.org/10.1007/s11144-017-1275-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1275-y

Keywords

Navigation