Skip to main content
Log in

Kinetic modeling of the methanol to olefins process in the presence of hierarchical SAPO-34 catalyst: parameter estimation, effect of reaction conditions and lifetime prediction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This paper reports a lumped kinetic model for the MTO process in the presence of hierarchical SAPO-34 catalyst. The kinetic model takes into account 14 components (including main and side products) and 13 reactions. The reaction kinetics was studied under the temperature range of 400–490 °C, methanol concentration of 30–60 wt%, and weight hourly space velocity (WHSV) between 1.5 and 3 gMeOH g −1cat h−1. The kinetic parameters were calculated employing the genetic algorithm and defining an appropriate objective function. The proposed kinetic model is able to predict the product concentrations measured in the fixed bed reactor. Using the obtained kinetic model, the effect of temperature, WHSV, and methanol concentration on the product yield and methanol conversion have been investigated. Finally, a suitable function for the prediction of the catalyst lifetime in the process has been proposed. It was revealed that temperature possessed the greatest influence on the stability of the catalyst compared to the other operating parameters including WHSV and methanol concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hajfarajollah H, Askari S, Halladj R (2014) Effects of micro and nano-sized SAPO-34 and SAPO-5 catalysts on the conversion of methanol to light olefins. React Kinet Mech Catal 111(2):723–736

    Article  CAS  Google Scholar 

  2. Wu L, Liu Z, Qiu M, Yang C, Xia L, Liu X, Sun Y (2014) Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction. React Kinet Mech Catal 111(1):319–334

    Article  CAS  Google Scholar 

  3. Hajiashrafi T, Kharat AN (2013) Study of preparation methods and their effect on the morphology and texture of SAPO-34 for the methanol to olefin reaction. React Kinet Mech Catal 108(2):417–432

    Article  CAS  Google Scholar 

  4. Karlsson A, Stöcker M, Schmidt R (1999) Composites of micro-and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Microporous Mesoporous Mater 27(2):181–192

    Article  CAS  Google Scholar 

  5. Khadzhiev S, Magomedova M, Peresypkina E (2015) Kinetic models of methanol and dimethyl ether conversion to olefins over zeolite catalysts (Review). Pet Chem 55(7):503–521

    Article  CAS  Google Scholar 

  6. Hajiashrafi T, Kharat AN, Dauth A, Lewis AR, Love JA (2014) Preparation and characterization of lanthanide modified SAPO-34 nano catalysts and measurement of their activity for methanol to olefin conversion. React Kinet Mech Catal 113(2):585–603

    Article  CAS  Google Scholar 

  7. Pajaie HS, Taghizadeh M (2016) Methanol conversion to light olefins over surfactant-modified nanosized SAPO-34. React Kinet Mech Catal 118(2):701–717

    Article  Google Scholar 

  8. Mozaffari S, Tchoukov P, Mozaffari A, Atias J, Czarnecki J, Nazemifard N (2017) Capillary driven flow in nanochannels–Application to heavy oil rheology studies. Colloids Surf A 513:178–187

    Article  CAS  Google Scholar 

  9. Schmidt F, Paasch S, Brunner E, Kaskel S (2012) Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater 164:214–221

    Article  CAS  Google Scholar 

  10. Obrzut DL, Adekkanattu PM, Thundimadathil J, Liu J, Dubois DR, Guin JA (2003) Reducing methane formation in methanol to olefins reaction on metal impregnated SAPO-34 molecular sieve. React Kinet Catal Lett 80(1):113–121

    Article  CAS  Google Scholar 

  11. Park T-Y, Froment GF (2001) Kinetic modeling of the methanol to olefins process. 1. Model formulation. Ind Eng Chem Res 40(20):4172–4186

    Article  CAS  Google Scholar 

  12. Izadbakhsh A, Khatami A (2014) Mathematical modeling of methanol to olefin conversion over SAPO-34 catalyst using the percolation concept. React Kinet Mech Catal 112(1):77–100

    Article  CAS  Google Scholar 

  13. Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. Acs Catal 5(3):1922–1938

    Article  CAS  Google Scholar 

  14. Keshmiri K, Mozaffari S, Tchoukov P, Huang H, Nazemifard N (2016) Using Microfluidic Device to Study Rheological Properties of Heavy Oil. arXiv preprint arXiv:161110163

  15. Alwahabi SM, Froment GF (2004) Single event kinetic modeling of the methanol-to-olefins process on SAPO-34. Ind Eng Chem Res 43(17):5098–5111

    Article  CAS  Google Scholar 

  16. Chen D, Grønvold A, Moljord K, Holmen A (2007) Methanol conversion to light olefins over SAPO-34: reaction network and deactivation kinetics. Ind Eng Chem Res 46(12):4116–4123

    Article  CAS  Google Scholar 

  17. Fatourehchi N, Sohrabi M, Royaee SJ, Mirarefin SM (2011) Preparation of SAPO-34 catalyst and presentation of a kinetic model for methanol to olefin process (MTO). Chem Eng Res Des 89(6):811–816

    Article  CAS  Google Scholar 

  18. Gayubo AG, Aguayo AT, Sánchez del Campo AE, Tarrío AM, Bilbao J (2000) Kinetic modeling of methanol transformation into olefins on a SAPO-34 catalyst. Ind Eng Chem Res 39(2):292–300

    Article  CAS  Google Scholar 

  19. Najafabadi AT, Fatemi S, Sohrabi M, Salmasi M (2012) Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. J Ind Eng Chem 18(1):29–37

    Article  CAS  Google Scholar 

  20. Mozaffari S, Tchoukov P, Atias J, Czarnecki J, Nazemifard N (2015) Effect of asphaltene aggregation on rheological properties of diluted Athabasca Bitumen. Energy Fuels 29(9):5595–5599

    Article  CAS  Google Scholar 

  21. Bos AR, Tromp PJ, Akse HN (1995) Conversion of methanol to lower olefins. Kinetic modeling, reactor simulation, and selection. Ind Eng Chem Res 34(11):3808–3816

    Article  CAS  Google Scholar 

  22. Park T-Y, Froment GF (2001) Kinetic modeling of the methanol to olefins process. 2. Experimental results, model discrimination, and parameter estimation. Ind Eng Chem Res 40(20):4187–4196

    Article  CAS  Google Scholar 

  23. Sedighi M, Bahrami H, Towfighi J (2014) Kinetic modeling formulation of the methanol to olefin process: Parameter estimation. J Ind Eng Chem 20(5):3108–3114

    Article  CAS  Google Scholar 

  24. Ying L, Yuan X, Ye M, Cheng Y, Li X, Liu Z (2015) A seven lumped kinetic model for industrial catalyst in DMTO process. Chem Eng Res Des 100:179–191

    Article  CAS  Google Scholar 

  25. Mousavia SH, Fatemi S, Razavian M (2017) Synthesis and in situ modification of hierarchical SAPO-34 by PEG with different molecular weights; Application in MTO Process. arXiv preprint arXiv:170109159

  26. Levenspiel O (1999) Chemical reaction engineering. Ind Eng Chem Res 38(11):4140–4143

    Article  CAS  Google Scholar 

  27. Schwaab M, Pinto JC (2007) Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant. Chem Eng Sci 62(10):2750–2764

    Article  CAS  Google Scholar 

  28. Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K-P, Kolboe S, Bjørgen M (2006) Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes. J Am Chem Soc 128(46):14770–14771

    Article  CAS  Google Scholar 

  29. Wang C-M, Wang Y-D, Xie Z-K (2014) Verification of the dual cycle mechanism for methanol-to-olefin conversion in HSAPO-34: a methylbenzene-based cycle from DFT calculations. Catal Sci Technol 4(8):2631–2638

    Article  CAS  Google Scholar 

  30. Wang C-M, Wang Y-D, Du Y-J, Yang G, Xie Z-K (2015) Similarities and differences between aromatic-based and olefin-based cycles in H-SAPO-34 and H-SSZ-13 for methanol-to-olefins conversion: insights from energetic span model. Catal Sci Technol 5(9):4354–4364

    Article  CAS  Google Scholar 

  31. Dai W, Wang C, Dyballa M, Wu G, Guan N, Li L, Xie Z, Hunger M (2014) Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34. ACS Catal 5(1):317–326

    Article  Google Scholar 

  32. Cai G, Liu Z, Shi R, Changqing H, Yang L, Sun C, Chang Y (1995) Light alkenes from syngas via dimethyl ether. Appl Catal A 125(1):29–38

    Article  CAS  Google Scholar 

  33. Li J, Wei Y, Liu G, Qi Y, Tian P, Li B, He Y, Liu Z (2011) Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. Catal Today 171(1):221–228

    Article  CAS  Google Scholar 

  34. Gayubo A, Aguayo A, Alonso A, Atutxa A, Bilbao J (2005) Reaction scheme and kinetic modelling for the MTO process over a SAPO-18 catalyst. Catal Today 106(1):112–117

    Article  CAS  Google Scholar 

  35. Qi G, Xie Z, Yang W, Zhong S, Liu H, Zhang C, Chen Q (2007) Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Process Technol 88(5):437–441

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohreh Fatemi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.H., Fatemi, S. & Razavian, M. Kinetic modeling of the methanol to olefins process in the presence of hierarchical SAPO-34 catalyst: parameter estimation, effect of reaction conditions and lifetime prediction. Reac Kinet Mech Cat 122, 1245–1264 (2017). https://doi.org/10.1007/s11144-017-1266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1266-z

Keywords

Navigation