Skip to main content
Log in

Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

SAPO-34 molecular sieves with different crystal morphologies were synthesized under microwave conditions. The type of organic templates, crystallization time and temperature were optimized to control the synthesis. These SAPO-34 samples were characterized by XRD, SEM, EDX, TG, nitrogen adsorption–desorption, NH3-TPD and solid state MAS NMR techniques. It was found that the crystallization conditions greatly affected the crystal morphology, textural data, Si incorporation and acidity of SAPO-34. Pure SAPO-34 with uniform sphere particles of 20 nm was obtained after crystallization at 165 °C for 0.75 h under microwave conditions using TEAOH as the template. Raising the temperature to 220 °C and prolonging the crystallization time to 2 h led to the formation of nano sheet-like SAPO-34 with a BET surface area of 593 m2/g. NH3-TPD profiles showed that low crystallization temperature and short crystallization time resulted in fewer weak acid sites and strong acid sites, while higher crystallization temperature and longer crystallization time increased the amount of both acid sites, which may benefit the methanol to olefins (MTO) reaction. The nano sheet-like SAPO-34 exhibited 100 % methanol conversion for 380 min during the MTO process, an ethylene selectivity of 51.77 % and a C =2 –C =4 selectivity of 90.20 %. The result was much better than that of the sample with a larger cubic morphology of 1.5–2.5 μm synthesized under hydrothermal conditions, on which the 100 % methanol conversion could only be kept for 212 min as well as an ethylene selectivity of 49.84 % and a C =2 –C =4 selectivity of 86.81 %. The unique morphology of the nano sheet-like SAPO-34 decreased its coke formation rate, which might be responsible for its improved catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) J Am Chem Soc 104:1146–1147

    Article  CAS  Google Scholar 

  2. Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) US patent:4,400,781

  3. Salmasi M, Fatemi S, Najafabadi AT (2011) J Ind Eng Chem 17:755–761

    Article  CAS  Google Scholar 

  4. Davis ME (2002) Nature 417:813–821

    Article  CAS  Google Scholar 

  5. Yu J, Xu R (2006) Chem Soc Rev 35:593–604

    Article  CAS  Google Scholar 

  6. Vora BV, Marker TL, Barger PT, Nilsen HR, Kvisle S, Fuglerud T (1997) Stud Surf Sci Catal 107:87–98

    Article  CAS  Google Scholar 

  7. Liang J, Li HY, Zhao S, Guo WG, Wang RH, Ying ML (1990) Appl Catal 64:31–40

    Article  CAS  Google Scholar 

  8. Ye L, Cao F, Ying W, Fang D, Sun Q (2010) J Porous Mater 18:225–232

    Article  Google Scholar 

  9. Nishiyama N, Kawaguchi M, Hirota Y, Van Vu D, Egashira Y, Ueyama K (2009) Appl Catal A Gen 362:193–199

    Article  CAS  Google Scholar 

  10. Jun JW, Lee JS, Seok HY, Chang JS, Hwang JS, Jhung SH (2011) Bull Korean Chem Soc 32:1957–1964

    Article  CAS  Google Scholar 

  11. Lee KY, Chae HJ, Jeong SY, Seo G (2009) Appl Catal A Gen 369:60–66

    Article  CAS  Google Scholar 

  12. Chen D, Moljord K, Fuglerud T, Holmen A (1999) Microporous Mesoporous Mater 29:191–203

    Article  CAS  Google Scholar 

  13. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2012) Catal Today 179:27–34

    Article  Google Scholar 

  14. Dargahi M, Kazemian H, Soltanieh M, Rohani S, Hosseinpour M (2011) Particuology 9:452–457

    Article  CAS  Google Scholar 

  15. Yao J, Wang H, Ringer SP, Chan KY, Zhang L, Xu N (2005) Microporous Mesoporous Mater 85:267–272

    Article  CAS  Google Scholar 

  16. Hirota Y, Murata K, Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2010) Mater Chem Phys 123:507–509

    Article  CAS  Google Scholar 

  17. Askari S, Halladj R (2012) Ultrason Sonochem 19:554–559

    Article  CAS  Google Scholar 

  18. Lin S, Li J, Sharma RP, Yu J, Xu R (2010) Top Catal 53:1304–1310

    Article  CAS  Google Scholar 

  19. Venna SR, Carreon MA (2009) J Mater Chem 19:3138–3140

    Article  CAS  Google Scholar 

  20. Tan J, Liu Z, Bao X, Liu X, Han X, He C, Zhai R (2002) Microporous Mesoporous Mater 53:97–108

    Article  CAS  Google Scholar 

  21. Liu G, Tian P, Li J, Zhang D, Zhou F, Liu Z (2008) Microporous Mesoporous Mater 111:143–149

    Article  CAS  Google Scholar 

  22. Cheng M, Tan D, Liu X, Han X, Bao X, Lin L (2001) Microporous Mesoporous Mater 42:307–316

    Article  CAS  Google Scholar 

  23. van Niekerk MJ, Fletcher JCQ, O’Connor CT (1996) Appl Catal A Gen 138:135–145

    Article  Google Scholar 

  24. Travalloni L, Gomes ACL, Gaspar AB, da Silva MAP (2008) Catal Today 133–135:406–412

    Article  Google Scholar 

  25. Tan J, Liu Z, Bao X, Liu X, Han X (2002) Microporous Mesoporous Mater 53:97–108

    Article  CAS  Google Scholar 

  26. Chen T, Wouters BH, Grobet PJ (1999) J Phys Chem B 103:6179–6184

    Article  CAS  Google Scholar 

  27. Zibrowius B, Löffler E, Hunger M (1992) Zeolites 12:167–174

    Article  CAS  Google Scholar 

  28. Ashtekar S, Chilukuri SVV, Chakrabarty DK (1994) J Phys Chem 98:4878–4883

    Article  CAS  Google Scholar 

  29. Ojo AF, Dwyer J, Dewing J, O’Malley PJ, Nabhan A (1992) J Chem Soc Faraday Trans 88:105–112

    Article  CAS  Google Scholar 

  30. Wei Y, Zhang D, He Y, Xu L, Yang Y, Su BL, Liu Z (2007) Catal Lett 114:30–35

    Article  CAS  Google Scholar 

  31. Beale AM, O’Brien MG, Kasunič M, Golobič A, Sanchez–Sanchez M, Lobo AJW, Lewis DW, Wragg DS, Nikitenko S, Bras W, Weckhuysen BM (2011) J Phys Chem C 115:6331–6340

    Article  CAS  Google Scholar 

  32. Aguayo AT, Gayubo AG, Atutxa A, Olazar M, Bilbao J (1999) J Chem Technol Biotechnol 74:1082–1088

    Article  CAS  Google Scholar 

  33. Hajiashrafi T, Kharat AN (2013) Reac Kinet Mech Cat 108:417–432

    Article  CAS  Google Scholar 

  34. Wang P, Lv A, Hu J, Xu J, Lu G (2012) Microporous Mesoporous Mater 152:178–184

    Article  CAS  Google Scholar 

  35. Zhang J, Zhang H, Yang X, Huang Z, Cao W (2011) J Nat Gas Chem 20:266–270

    Article  CAS  Google Scholar 

  36. Chen D, Rebo HK, Moljord K, Holmen A (1997) Ind Eng Chem Res 36:3473–3479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhan Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RTF 1248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Liu, Z., Qiu, M. et al. Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction. Reac Kinet Mech Cat 111, 319–334 (2014). https://doi.org/10.1007/s11144-013-0639-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0639-1

Keywords

Navigation