Skip to main content
Log in

Kinetic study on the thermal degradation of ethylene–norbornene copolymers under the effect of Fe and Mn stearates

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A kinetic study on the thermal degradation of ethylene–norbornene cyclic olefin copolymers (COCs), pristine and formulated with iron and manganese stearate, was performed. Three different COCs with cyclic structure (norbornene) contents of 30 mol% (COC30), 38 mol% (COC38), and 55 mol% (COC55) were analyzed. The thermal degradation order (n), activation energy (E a), and pre-exponential factor (A) were evaluated using multiple heating rates based on three different “model-free” methods: Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose (KAS) and Friedman (FR). The thermal stability of virgin and formulated COC films with ferric and manganese stearates were calculated using a non-isothermal thermogravimetric analysis (TGA) and derivative thermogravimetric analysis. The reaction order of the thermodegradation of the tested copolymers was close to unity according to the KAS and FR methods. The calculated E a for pristine copolymers increased from 232 to 254 kJ mol−1 when the content of cyclic norbornene units in the pure copolymers was diminished from 55 to 30 mol%. The calculated E a for the stearate-formulated COC copolymers had values between 214 and 238 kJ mol−1. TGA curves of the thermal degradation in a nitrogen atmosphere show a one-step reaction in the range of temperatures between 30 and 600 °C. It was found that manganese stearate is more efficient than ferric stearate in initiating the thermodegradation of COC38 and COC55 copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Criado J, Malek J, Ortega A (1989) Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta 147:377–385

    Article  CAS  Google Scholar 

  2. Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250. doi:10.1016/j.polymdegradstab.2004.09.013

    Article  CAS  Google Scholar 

  3. Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S (2011) An overview of degradable and biodegradable polyolefins. Prog Polym Sci 36:1015–1049. doi:10.1016/j.progpolymsci.2010.12.002

    Article  CAS  Google Scholar 

  4. Selke S, Auras R, Nguyen TA, Castro Aguirre E, Cheruvathur R, Liu Y (2015) Evaluation of biodegradation-promoting additives for plastics. Environ Sci Technol 49:3769–3777

    Article  CAS  Google Scholar 

  5. Roy PK, Singh P, Kumar D, Rajagopal C (2010) Manganese stearate initiated photo-oxidative and thermo-oxidative degradation of LDPE, LLDPE and their blends. J Appl Polym Sci 117:524–533

    CAS  Google Scholar 

  6. Roy PK, Surekha P, Rajagopal C, Chatterjee SN, Choudhary V (2005) Effect of benzil and cobalt stearate on the aging of low-density polyethylene films. Polym Degrad Stab 90:577–585. doi:10.1016/j.polymdegradstab.2005.01.017

    Article  CAS  Google Scholar 

  7. Roy PK, Surekha P, Rajagopal C, Chatterjee SN, Choudhary V (2006) Accelerated aging of LDPE films containing cobalt complexes as prooxidants. Polym Degrad Stab 91:1791–1799. doi:10.1016/j.polymdegradstab.2005.11.010

    Article  CAS  Google Scholar 

  8. Roy PK, Surekha P, Rajagopal C, Choudhary V (2007) Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant. Express Polym Lett 1:208–216

    Article  CAS  Google Scholar 

  9. Roy PK, Surekha P, Raman R, Rajagopal C (2009) Investigating the role of metal oxidation state on the degradation behaviour of LDPE. Polym Degrad Stab 94:1033–1039. doi:10.1016/j.polymdegradstab.2009.04.025

    Article  CAS  Google Scholar 

  10. Chiellini E, Corti A, D’Antone S (2007) Oxo-biodegradable full carbon backbone polymers biodegradation behavior of thermally oxidized polyethylene in an aqueous medium. Polym Degrad Stab 92:1378–1383. doi:10.1016/j.polymdegradstab.2007.03.007

    Article  CAS  Google Scholar 

  11. Chiellini E, Corti A, D’Antone S, Baciu R (2006) Oxo-biodegradable carbon backbone polymers oxidative degradation of polyethylene under accelerated test conditions. Polym Degrad Stab 91:2739–2747. doi:10.1016/j.polymdegradstab.2006.03.022

    Article  CAS  Google Scholar 

  12. Pablos JL, Abrusci C, Marin I, Lopez-Marin J, Catalina F, Espi E, Corrales T (2010) Photodegradation of polyethylenes: comparative effect of Fe and Ca-stearates as pro-oxidant additives. Polym Degrad Stab 95:2057–2064. doi:10.1016/j.polymdegradstab.2010.07.003

    Article  CAS  Google Scholar 

  13. Black JF (1978) Metal-catalyzed autoxidation. The unrecognized consequences of metal-hydroperoxide complex formation. J Am Chem Soc 100:527–535

    Article  CAS  Google Scholar 

  14. Eyenga II, Focke WW, Prinsloo LC, Tolmay AT (2002) Photodegradation: a solution for the shopping bag “visual pollution” problem? Macromol Symp 178:139–152

    Article  CAS  Google Scholar 

  15. Islam NZM, Othman N (2011) Effect of pro-degradant additive on photo-oxidative aging of polypropylene film. Sains Malays 40:803–808

    CAS  Google Scholar 

  16. Maryudi Hisyam A, Yunus RM, Bag MDH (2013) Thermo-oxidative degradation of high density polyethylene containing manganese laurate. Int J Eng Res Appl 3:1156–1165

    Google Scholar 

  17. Maryudi, Yunus RM, Nour AH, Beg MDH, Abidin MH (2012) The degradation of high density polyethylene containing manganese stearate under accelerated weathering. In: IC-GWBT (2012) Conference; March 23–24, Ahmad Dahlan University, pp 11–20

  18. Pablos JL, Abrusci C, Marin I, Lopez-Marin J, Catalina F, Espi E, Corrales T (2010) Photodegradation of polyethylenes: comparative effect of Fe and Ca-stearates as pro-oxidant additives. Polym Degrad Stab 95:2057–2064. doi:10.1016/j.polymdegradstab.2010.07.003

    Article  CAS  Google Scholar 

  19. Gutiérrez-Villarreal MH, Zavala-Betancourt SA (2014) Thermo-oxidative stability of cyclic olefin copolymers in the presence of Fe, Co and Mn stearates as pro-degradant additives. Polym Plast Technol Eng 53:1804–1810

    Article  Google Scholar 

  20. Barral L, Diez FJ, Garcia-Garabal S, Lopez J, Montero B, Montes R, Ramirez C, Rico M (2005) Thermodegradation kinetics of a hybrid inorganic-organic epoxy system. Eur Polym J 41:1662–1666. doi:10.1016/j.eurpolymj.2005.01.021

    Article  CAS  Google Scholar 

  21. Yang TCK, Lin SSY, Chuang T-H (2002) Kinetic analysis of the thermal oxidation of metallocene cyclic olefin copolymer (mCOC)/TiO2 composites by FTIR microscopy and thermogravimetry (TG). Polym Degrad Stab 78:525–532. doi:10.1016/S0141-3910(02)00225-2

    Article  CAS  Google Scholar 

  22. Woo Park J, Cheon Oh S, Pyeong Lee H, Taik Kim H, Ok Yoo K (2000) A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab 67:535–540. doi:10.1016/S0141-3910(99)00155-X

    Article  Google Scholar 

  23. Liu C, Yu J, Sun X, Zhang J, He J (2003) Thermal degradation studies of cyclic olefin copolymers. Polym Degrad Stab 81:197–205. doi:10.1016/S0141-3910(03)00089-2

    Article  CAS  Google Scholar 

  24. Barrera J, Rodríguez A, Perilla J, Algecira N (2007) Estudio de la degradación térmica de poli(alcohol vinilico) mediante termogravimetría y termogravimetría diferencial. Ingeniería en Investigación 27:100–105

    CAS  Google Scholar 

  25. Jankovic B (2013) Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr Polym 95:621–629. doi:10.1016/j.carbpol.2013.03.038

    Article  CAS  Google Scholar 

  26. Rajeshwari P (2016) Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes. J Therm Anal Calorim 123:1523–1544

    Article  CAS  Google Scholar 

  27. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  28. Chrissafis K (2008) Kinetics of thermal degradation of polymers: complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim 95:273–283

    Article  Google Scholar 

  29. Chrissafis K, Paraskevopoulos K, Tsiaoussis I, Bikiaris D (2009) Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci 114:1606–1618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of CONACYT Scholarship #333891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Gutierrez-Villarreal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutierrez-Villarreal, M., León-Molina, H.B. & Acosta, R. Kinetic study on the thermal degradation of ethylene–norbornene copolymers under the effect of Fe and Mn stearates. Reac Kinet Mech Cat 122, 995–1010 (2017). https://doi.org/10.1007/s11144-017-1256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1256-1

Keywords

Navigation