Skip to main content
Log in

Bimolecular condensation reactions of butan-1-ol on Ag–CeO2 decorated multiwalled carbon nanotubes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

CeO2/MWCNTs, Ag/MWCNTs and Ag–CeO2/MWCNTs hybrid composite nanomaterials with 5 wt% active component contents applied as catalysts of dehydrogenation and consecutive bimolecular condensation of a primary alcohol, butan-1-ol, revealed diversified properties. CeO2/MWCNTs showed the catalytic activity of pure cerium oxide despite its much lower content. Products obtained over Ag/MWCNTs did not contain ketone or ester in spite of higher dehydrogenation. Ag–CeO2/MWCNTs showed superior catalytic activity and selectivity towards subsequent C–C coupling, thus significantly higher yield of the symmetrical ketone (heptan-4-one) was achieved (at 400 °C, yield of the ketone over CeO2/MWCNTs and over Ag–CeO2/MWCNTs were 1 and 28%, respectively). The preserved character of the transformations over the CeO2/MWCNTs was shifted by tens of degrees to lower temperatures. It clearly indicates a synergistic interaction between the components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aitchison H, Wingad RL, Wass DF (2016) Homogeneous ethanol to butanol catalysis—Guerbet renewed. ACS Catal 6:7125–7132

    Article  CAS  Google Scholar 

  2. Prakash A, Dhabhai R, Sharma V (2016) A review on fermentative production of biobutanol from biomass. Curr Biochem Eng 3:37–46

    Article  CAS  Google Scholar 

  3. Johnson E, Sarchami T, Kießlich S, Munch G, Rehmann L (2016) Consolidating biofuel platforms through the fermentative bioconversion of crude glycerol to butanol. World J Microbiol Biotechnol 32:103

    Article  Google Scholar 

  4. Shelepova EV, Ilina LY, Vedyagin AA (2017) Kinetic studies of methanol dehydrogenation. Part I: copper-silica catalysts. Reac Kinet Mech Cat 120:449–458. doi:10.1007/s11144-016-1135-1

    Article  CAS  Google Scholar 

  5. Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD (2016) Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1:32–58

    Article  CAS  Google Scholar 

  6. Teterycz H, Klimkiewicz R, Łaniecki M (2004) Study on physico-chemical properties of tin dioxide based gas sensitive materials used in condensation reactions of n-butanol. Appl Catal A-Gen 274:49–60

    Article  CAS  Google Scholar 

  7. Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473

    Article  CAS  Google Scholar 

  8. Gliński M, Zalewski G, Burno E, Jerzak A (2014) Catalytic ketonization over metal oxide catalysts. xiii. Comparative measurements of activity of oxides of 32 chemical elements in ketonization of propanoic acid. Appl Catal A-Gen 470:278–284

    Article  Google Scholar 

  9. James OO, Maity S, Mesubi MA, Usman LA, Ajanaku KO, Siyanbola TO, Sahu S, Chaubey R (2012) A review on conversion of triglycerides to on-specification diesel fuels without additional inputs. Int J Energy Res 36:691–702

    Article  CAS  Google Scholar 

  10. Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2010) Ketonization reactions of carboxylic acids and esters over ceria–zirconia as biomass-upgrading processes. Ind Eng Chem Res 49:6027–6033

    Article  CAS  Google Scholar 

  11. Phung TK, Casazza AA, Aliakbarian B, Finocchio E, Perego P, Busca G (2013) Catalytic conversion of ethyl acetate and acetic acid on alumina as models of vegetable oils conversion to biofuels. Chem Eng J 215–216:838–848

    Article  Google Scholar 

  12. Krasnobaeva ON, Belomestnykh IP, Nosova TA, Elizarova TA, Isagulyants GV, Kolesnikov SP, Danilov VP (2011) Tantalum containing catalysts for oxydehydrogenation of hydrocarbons and alcohols. Russ J Inorg Chem 56:1012–1016

    Article  CAS  Google Scholar 

  13. Wang CT, Ro SH (2005) Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation. Appl Catal A-Gen 285:196–204

    Article  CAS  Google Scholar 

  14. Kamiguchi S, Nishida S, Kodomari M, Chihara T (2005) Catalytic hydrodehydration of cyclohexanone, hydrogenation of 2-cyclohexen-1-one, and dehydrogenation of cyclohexene over a Mo chloride cluster with an octahedral metal framework. J Clust Sci 16:77–91

    Article  CAS  Google Scholar 

  15. Jordison TL, Peereboom L, Miller DJ (2016) Impact of water on condensed phase ethanol Guerbet reactions. Ind Eng Chem Res 55:6579–6585

    Article  CAS  Google Scholar 

  16. Ballarini N, Cavani F, Maselli L, Montaletti A, Passeri S, Scagliarini D, Flego C, Perego C (2007) The transformations involving methanol in the acid- and base-catalyzed gas-phase methylation of phenol. J Catal 251:423–436

    Article  CAS  Google Scholar 

  17. Zawadzki M, Grabowska H, Trawczyński J (2010) Effect of synthesis method of LSCF perovskite on its catalytic properties for phenol methylation. Solid State Ion 181:1131–1139

    Article  CAS  Google Scholar 

  18. Pal N, Paul M, Bhaumik A (2011) New mesoporous perovskite ZnTiO3 and its excellent catalytic activity in liquid phase organic transformations. Appl Catal A-Gen 393:153–160

    Article  CAS  Google Scholar 

  19. Vivier L, Duprez D (2010) Ceria-based solid catalysts for organic chemistry. Chemsuschem 3:654–678

    Article  CAS  Google Scholar 

  20. Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2009) Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. J Catal 266:71–78

    Article  CAS  Google Scholar 

  21. Deng D, Chen N, Li Y, Xing X, Liu X, Xiao X, Wang Y (2017) Cerium oxide nanoparticles/multi-wall carbon nanotubes composites: facile synthesis and electrochemical performances as supercapacitor electrode materials. Physica E 86:284–291

    Article  CAS  Google Scholar 

  22. Ren LP, Dai WL, Cao Y, Li H, Fan K (2003) First observation of highly efficient dehydrogenation of methanol to anhydrous formaldehyde over novel Ag–SiO2–MgO–Al2O3 catalyst. Chem Commun 24:3030–3031

    Article  Google Scholar 

  23. Vakhshouri AR, Azizov A, Aliyeva R, Bagirova S (2012) Synthesis, structure, and thermo-physical properties of Fe2O3. Al2O3 and polyethylene nanocomposites. J Appl Polym Sci 124:5106–5112

    CAS  Google Scholar 

  24. Lavkova J, Khalakhan I, Chundak M, Vorokhta M, Potin V, Matolin V, Matolinova I (2015) Growth and composition of nanostructured and nanoporous cerium oxide thin films on a graphite foil. Nanoscale 7:4038–4047

    Article  CAS  Google Scholar 

  25. Biniak S, Szymański G, Siedlewski J,Świa̧tkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35:1799–1810

    Article  CAS  Google Scholar 

  26. Gergova K, Eser S, Schobert HH, Klimkiewicz M, Brown PW (1995) Environmental scanning electron microscopy of activated carbon production from anthracite by one-step pyrolysis-activation. Fuel 74:1042–1048

    Article  CAS  Google Scholar 

  27. Klimkiewicz R (2010) Catalytic properties of activated carbons derived from lignite. Górnictwo Odkrywkowe 51:60–64

    Google Scholar 

  28. Yang ZH, Pan YM, Mei ZS, Zhang WX (2012) Preparation of mesoporous MnO2/C catalyst for n-hexyl acetate synthesis. Appl Surf Sci 258:4756–4763

    Article  CAS  Google Scholar 

  29. Szychowski D, Pacewska B (2012) Methods of preparation and properties of mineral-carbon sorbents obtained from coal-tar pitch-polymer compositions. J Therm Anal Calorim 109:789–795

    Article  CAS  Google Scholar 

  30. Klimkiewicz R, Morawski AW, Mista W (1993) Bi-K-graphite intercalation compound as a new catalyst for styrene synthesis. J Catal 144:627–631

    Article  CAS  Google Scholar 

  31. Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7:274–282. doi:10.4081/ija.2012.e37

    Google Scholar 

  32. Cyganiuk A, Klimkiewicz R, Bumajdad A, Włoch J, Kucinska A, Lukaszewicz JP (2014) Manufacture of a nanostructured CeOx/carbon catalyst for n-butanol conversion. Mater Lett 118:119–122

    Article  CAS  Google Scholar 

  33. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169:59–79

    Article  CAS  Google Scholar 

  34. Zarubina V, Nederlof C, van der Linden B, Kapteijn F, Heeres HJ, Makkee M, Melián-Cabrera I (2014) Making coke a more efficient catalyst in the oxidative dehydrogenation of ethylbenzene using wide-pore transitional aluminas. J Mol Catal A: Chem 381:179–187

    Article  CAS  Google Scholar 

  35. Cargnello M, Grzelczak M, Rodriguez-Gonzalez B, Syrgiannis Z, Bakhmutsky K, La Parola V, Liz-Marzan LM, Gorte RJ, Prato M, Fornasiero P (2012) Multiwalled carbon nanotubes drive the activity of metal@oxide core–shell catalysts in modular nanocomposites. J Am Chem Soc 134:11760–11766

    Article  CAS  Google Scholar 

  36. Allaedini G, Tasirin SM, Aminayi P (2016) Yield optimization of nanocarbons prepared via chemical vapor decomposition of carbon dioxide using response surface methodology. Diam Relat Mater 66:196–205

    Article  CAS  Google Scholar 

  37. Surisetty VR, Dalai AK, Kozinski J (2010) Alkali-promoted trimetallic Co-Rh-Mo sulfide catalysts for higher alcohols synthesis from synthesis gas: comparison of MWCNT and activated carbon supports. Ind Eng Chem Res 49:6956–6963

    Article  CAS  Google Scholar 

  38. Almohalla M, Morales MV, Asedegbega-Nieto E, Maroto-Valiente A, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A (2014) Bioethanol transformations over active surface sites generated on carbon nanotubes or carbon nanofibers materials. The Open Cat J 7:1–7

    Article  Google Scholar 

  39. Liang XL, Dong X, Lin GD, Zhang HB (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B-Environ 88:315–322

    Article  CAS  Google Scholar 

  40. Boncel S, Pattinson SW, Geiser V, Shaffer MSP, Koziol KKK (2014) En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays. Beilstein J Nanotechnol 5:219–233

    Article  Google Scholar 

  41. Kovalska E (2013) Catalytic CVD-synthesis of carbon nanotubes, their modification and application. PhD Thesis, National Academy of Sciences of Ukraine, Kiev

  42. Allaedini G, Tasirin SM, Aminayi P (2016) The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst. Russ J Phys Chem A 90:2080–2088

    Article  CAS  Google Scholar 

  43. Allaedini G, Aminayi P, Tasirin SM (2016) Methane decomposition for carbon nanotube production: optimization of the reaction parameters using response surface methodology. Chem Eng Res Des 112:163–174

    Article  CAS  Google Scholar 

  44. Kundu S, Wang Y, Xia W, Muhler M (2008) Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J Phys Chem C 112:16869–16878

    Article  CAS  Google Scholar 

  45. Yoo E, Habe T, Nakamura J (2005) Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials. Sci Technol Adv Mater 6:615–619

    Article  CAS  Google Scholar 

  46. Orináková R, Orinák A (2011) Recent applications of carbon nanotubes in hydrogen production and storage. Fuel 90:3123–3140

    Article  Google Scholar 

  47. Larese C, Lopez Granados M, Mariscal R, Fierro JLG, Lambrou PS, Efstathiou AM (2005) The effect of calcination temperature on the oxygen storage and release properties of CeO2 and Ce-Zr-O metal oxides modified by phosphorus incorporation. Appl Catal B-Environ 59:13–25

    Article  CAS  Google Scholar 

  48. Ding M, Tang Y, Star A (2013) Understanding interfaces in metal–graphitic hybrid nanostructures. J Phys Chem Lett 4:147–160

    Article  CAS  Google Scholar 

  49. Winiarska K, Klimkiewicz R, Winiarski J, Szczygieł I (2017) Mn0.6Zn0.4Fe2O4 ferrites prepared by the modified combustion method as the catalyst for butan-1-ol dehydrogenation. Reac Kinet Mech Cat 120:261–278. doi:10.1007/s11144-016-1095-5

    Article  CAS  Google Scholar 

  50. Song S, Yang H, Rao R, Liu H, Zhang A (2010) High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst. Appl Catal A-Gen 375:265–271

    Article  CAS  Google Scholar 

  51. Rather S, Naik M, Hwang S, Kim A, Nahm K (2009) Room temperature hydrogen uptake of carbon nanotubes promoted by silver metal catalyst. J Alloys Compd 475:L17–L21

    Article  CAS  Google Scholar 

  52. Wang ZX, Li XN, Ren CL, Yong ZZ, Zhu JK, Luo WY, Fang XM (2009) Growth of Ag nanocrystals on multiwalled carbon nanotubes and Ag-carbon nanotube interaction. Sci China Ser E Technol Sci 52:3215–3218

    Article  CAS  Google Scholar 

  53. Wang CF, Guo SJ, Pan XL, Chen W, Bao XH (2008) Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels. J Mater Chem 18:5782–5786

    Article  CAS  Google Scholar 

  54. Arve K, Čapek L, Klingstedt F, Eränen K, Lindfors LE, Murzin DY, Dědeček J, Sobalik Z, Wichterlová B (2004) Preparation and characterisation of Ag/alumina catalysts for the removal of NOx emissions under oxygen rich conditions. Top Catal 30(31):91–95

    Article  Google Scholar 

  55. Aneggi E, Llorca J, de Leitenburg C, Dolcetti G, Trovarelli A (2009) Soot combustion over silver-supported catalysts. Appl Catal B-Environ 91:489–498

    Article  CAS  Google Scholar 

  56. Qu Z, Yu F, Zhang X, Wang Y, Gao J (2013) Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation. Chem Eng J 229:522–532

    Article  CAS  Google Scholar 

  57. Kundakovic L, Flytzani-Stephanopoulos M (1998) Cu- and Ag- modified cerium oxide catalysts for methane oxidation. J Catal 179:203–221

    Article  CAS  Google Scholar 

  58. Čičmanec P, Raabová K, Hidalgo JM, Kubička D, Bulánek R (2017) Conversion of ethanol to acetaldehyde over VOX-SiO2 catalysts: the effects of support texture and vanadium speciation. Reac Kinet Mech Cat 121:353–369

    Article  Google Scholar 

  59. Requies J, Güemez MB, Iriondo A, Barrio VL, Cambra JF, Arias PL (2012) Bio n-butanol partial oxidation to butyraldehyde in gas phase on supported Ru and Cu catalysts. Catal Lett 142:417–426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication was created thanks to the Polish—Ukrainian Joint Research Project for years 2015–2017, under the agreement on scientific cooperation between the Polish Academy of Sciences and the National Academy of Sciences of Ukraine: Hybrid graphene nanomaterials for catalytic applications. The authors wish to thank Dr. Wojciech Gil (Faculty of Chemistry, University of Wrocław) for HRTEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Klimkiewicz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dovbeshko, G., Kovalska, E., Miśta, W. et al. Bimolecular condensation reactions of butan-1-ol on Ag–CeO2 decorated multiwalled carbon nanotubes. Reac Kinet Mech Cat 122, 1063–1080 (2017). https://doi.org/10.1007/s11144-017-1254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1254-3

Keywords

Navigation