Skip to main content
Log in

Structure sensitivity evaluation of catalytic CO2 hydrogenation to higher hydrocarbons by an iron catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of size dependent kinetic models based on thermodynamic method are developed for indirect CO2 hydrogenation to higher hydrocarbons by an iron catalysts via the Fischer–Tropsch synthesis. The size dependent parameters in these kinetic models are evaluated over a series of iron catalysts with different average particle sizes. The results showed that the reaction between surface CO and hydrogen species is the key reaction step in producing of the higher hydrocarbons. The heats of CO2 and H2 adsorption are calculated about 45.5 and 52.1 kJ mol−1, respectively, and the apparent activation energy for CO2 hydrogenation is 146 kJ mol−1. The results showed that the best kinetic model is developed based on two hypotheses; the change in Gibbs free energy of adsorption due to the nanosize effect is negative and surface occupation is low. In addition, the calculated size-independent CO2 hydrogenation reaction for large particles is about 0.0086 [mol/(gcat h)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ribeiro C, Leite E (2009) Assembly and properties of nanoparticles. In: Leite E (ed) Nanostructured materials for electrochemical energy production and storage. Springer, US, pp 33–79

    Chapter  Google Scholar 

  2. Ying JY (2006) Design and synthesis of nanostructured catalysts. Chem Eng Sci 61:1540–1548

    Article  CAS  Google Scholar 

  3. Wilcoxon JP (2012) Nanoparticles—preparation, characterization and physical properties. In: Roy LJ, Wilcoxon JP (eds) Frontiers of nanoscience. Elsevier, Oxford, pp 43–127

    Google Scholar 

  4. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    Article  CAS  Google Scholar 

  5. Welch C, Compton R (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601–619

    Article  CAS  Google Scholar 

  6. Bernhardt T, Heiz U, Landman U (2007) Chemical and catalytic properties of size-selected free and supported clusters. In: Heiz U, Landman U (eds) Nanocatalysis. Springer, Berlin, Heidelberg, pp 1–191

    Google Scholar 

  7. Bezemer GL, Remans TJ, van Bavel AP, Dugulan AI (2010) Direct evidence of water-assisted sintering of cobalt on carbon nanofiber catalysts during simulated Fischer–Tropsch conditions revealed with in situ Mössbauer spectroscopy. JACS 132:8540–8541

    Article  CAS  Google Scholar 

  8. Makhlouf MT, Abu-Zied BM, Mansoure TH (2013) direct fabrication of cobalt oxide nanoparticles employing sucrose as a combustion fuel. J Nanopart 2013:1–7

    Article  Google Scholar 

  9. Murzin DY (2010) Kinetic analysis of cluster size dependent activity and selectivity. J Catal 276:85–91

    Article  CAS  Google Scholar 

  10. Murzin DY, Simakova IL (2010) On quantitative description of metal particles size effect in catalytic kinetics. Kinet Catal 51:828–831

    Article  CAS  Google Scholar 

  11. Murzin D (2009) Size dependent interface energy and catalytic kinetics on non-ideal surfaces. React Kinet Catal Lett 97:165–171

    Article  CAS  Google Scholar 

  12. Parmon VN (2007) Thermodynamic analysis of the effect of the nanoparticle size of the active component on the adsorption equilibrium and the rate of heterogeneous catalytic processes. Dokl Phys Chem 413:42–48

    Article  CAS  Google Scholar 

  13. Lente G (2013) Comment on “‘Turning Over’Definitions in Catalytic Cycles”. ACS Catal 3:381–382

    Article  CAS  Google Scholar 

  14. Crooks AB, Yih K-H, Li L, Yang JC, Özkar S, Finke RG (2015) Unintuitive inverse dependence of the apparent turnover frequency on precatalyst concentration: a quantitative explanation in the case of ziegler-type nanoparticle catalysts made from [(1, 5-COD)Ir (μ-O2C8H15)]2 and AlEt3. ACS Catal 5:3342–3353

    Article  CAS  Google Scholar 

  15. Bligaard T, Bullock RM, Campbell CT, Chen JG, Gates BC, Gorte RJ, Jones CW, Jones WD, Kitchin JR, Scott SL (2016) Toward benchmarking in catalysis science: best practices, challenges, and opportunities. ACS Catal 6:2590–2602

    Article  CAS  Google Scholar 

  16. Pérez-Alonso FJ, Ojeda M, Herranz T, Rojas S, González-Carballo JM, Terreros P, Fierro JLG (2008) Carbon dioxide hydrogenation over Fe–Ce catalysts. Catal Commun 9:1945–1948

    Article  Google Scholar 

  17. Nakhaei Pour A, Chekreh S, Housaindokht MR, Eftekhari A (2016) Structural sensitivity of carbon monoxide hydrogenation by nano-structured iron catalyst. J Nanosci Nanotechnol 16:5856–5864

    Article  Google Scholar 

  18. Dagle RA, Hu J, Jones SB, Wilcox W, Frye JG, White JF, Jiang J, Wang Y (2013) Carbon dioxide conversion to valuable chemical products over composite catalytic systems. J Energy Chem 22:368–374

    Article  CAS  Google Scholar 

  19. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–231

    Article  CAS  Google Scholar 

  20. Wang Y, Lang X, Fan S (2013) Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas. J Energy Chem 22:39–47

    Article  Google Scholar 

  21. Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Env Sci 6:1711–1731

    Article  CAS  Google Scholar 

  22. Kaiser P, Unde RB, Kern C, Jess A (2013) Production of liquid hydrocarbons with CO2 as carbon source based on reverse water-gas shift and Fischer–Tropsch synthesis. Chem Ing Tech 85:489–499

    Article  CAS  Google Scholar 

  23. Prieto G, Martínez A, Concepción P, Moreno-Tost R (2009) Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. J Catal 266:129–144

    Article  CAS  Google Scholar 

  24. Nakhaei Pour A, Housaindokht M (2013) Fischer–Tropsch synthesis over CNT supported cobalt catalysts: role of metal nanoparticle size on catalyst activity and products selectivity. Catal Lett 143:1328–1338

    Article  CAS  Google Scholar 

  25. Nakhaei Pour A, Housaindokht MR, Irani M, Kamali Shahri SM (2014) Size-dependent studies of Fischer–Tropsch synthesis on iron based catalyst: new kinetic model. Fuel 116:787–793

    Article  CAS  Google Scholar 

  26. Nakhaei Pour A, Housaindokht M, Torabi F (2014) Water–gas shift kinetics over lanthanum-promoted iron catalyst in Fischer–Tropsch synthesis: thermodynamic analysis of nanoparticle size effect. J Iran Chem Soc 11:1639–1648

    Article  CAS  Google Scholar 

  27. Trépanier M, Dalai AK, Abatzoglou N (2010) Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions. Appl Catal A 374:79–86

    Article  Google Scholar 

  28. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. JACS 128:3956–3964

    Article  CAS  Google Scholar 

  29. Liu Y, Chen J-F, Zhang Y (2015) Effects of pretreatment on iron-based catalysts for forming light olefins via Fischer–Tropsch synthesis. Reac Kinet Mech Cat 114:433–449

    Article  CAS  Google Scholar 

  30. Gül ÖF, Ataç Ö, Boz İ, Özkara-Aydınoğlu Ş (2016) La, Mn and Zn promoted microporous iron catalysts with high productivity and stability for Fischer–Tropsch synthesis. Reac Kinet Mech Cat 117:147–159

    Article  Google Scholar 

  31. Liu Y, Li Z, Zhang Y (2016) Selectively forming light olefins via macroporous iron-based Fischer–Tropsch catalysts. Reac Kinet Mech Cat 119:457–468

    Article  CAS  Google Scholar 

  32. Riedel T, Schaub G, Jun K-W, Lee K-W (2001) Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst. Ind Eng Chem Res 40:1355–1363

    Article  CAS  Google Scholar 

  33. Nakhaei Pour A, Housaindokht MR (2017) A new kinetic model for direct CO2 hydrogenation to higher hydrocarbons on a precipitated iron catalyst: effect of catalyst particle size. J Energy Chem 26:359–367

    Article  Google Scholar 

  34. Nakhaei Pour A, Housaindokht MR, Monhemi H (2016) A new LHHW kinetic model for CO2 hydrogenation over an iron catalyst. Prog React Kinet Mech 41:159–169

    Article  Google Scholar 

  35. Van Der Laan GP, Beenackers AACM (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal Rev Sci Eng 41:255–318

    Article  Google Scholar 

  36. Abbaslou RMM, Soltan J, Dalai AK (2010) Effects of nanotubes pore size on the catalytic performances of iron catalysts supported on carbon nanotubes for Fischer–Tropsch synthesis. Appl Catal A 379:129–134

    Article  CAS  Google Scholar 

  37. Murzin DY (2009) Thermodynamic analysis of nanoparticle size effect on catalytic kinetics. Chem Eng Sci 64:1046–1052

    Article  CAS  Google Scholar 

  38. Nakhaei Pour A, Housaindokht M, Behroozsarand A, Khodagholi M (2014) Thermodynamic analysis of nanoparticle size effect on kinetics in Fischer–Tropsch synthesis by lanthanum promoted iron catalyst. Appl Phy A 116:789–797

    Article  CAS  Google Scholar 

  39. Murzin DY (2010) Size-dependent heterogeneous catalytic kinetics. J Mol Catal A 315:226–230

    Article  CAS  Google Scholar 

  40. Nakhaei Pour A, Housaindokht MR, Shahri SMK, Babakhani EG, Irani M (2011) Size dependence on reduction kinetic of iron based Fischer–Tropsch catalyst. J Ind Eng Chem 17:596–602

    Article  Google Scholar 

  41. Teng B-T, Chang J, Zhang C-H, Cao D-B, Yang J, Liu Y, Guo X-H, Xiang H-W, Li Y-W (2006) A comprehensive kinetics model of Fischer–Tropsch synthesis over an industrial Fe–Mn catalyst. Appl Catal A 301:39–50

    Article  CAS  Google Scholar 

  42. Nowicki L, Ledakowicz S, Bukur DB (2001) Hydrocarbon selectivity model for the slurry phase Fischer–Tropsch synthesis on precipitated iron catalysts. Chem Eng Sci 56:1175–1180

    Article  CAS  Google Scholar 

  43. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, New York

    Book  Google Scholar 

  44. Nakhaei Pour A, Housaindokht M, Monhemi H (2014) Effect of solvent surface tension on the radius of hematite nanoparticles. Colloid J 76:782–787

    Article  Google Scholar 

  45. Nakhaei Pour A, Housaindokht MR, Zarkesh J, Irani M, Babakhani EG (2012) Kinetics study of CO hydrogenation on a precipitated iron catalyst. J Ind Eng Chem 18:597–603

    Article  Google Scholar 

  46. Nakhaei Pour A, Riyahi F, Housaindokht MR, Irani M, Shahri SMK, Hatami B (2013) Hydrocarbon production rates in Fischer–Tropsch synthesis over a Fe/Cu/La/Si catalyst. J Energy Chem 22:119–129

    Article  Google Scholar 

  47. Nakhaei Pour A, Hosaini E, Feyzi M (2016) Prediction of cobalt particle size during catalyst deactivation in Fischer–Tropsch synthesis. J Iran Chem Soc 13:139–147

    Article  CAS  Google Scholar 

  48. Nakhaei Pour A, Housaindokht MR (2013) The olefin to paraffin ratio as a function of catalyst particle size in Fischer–Tropsch synthesis by iron catalyst. J Nat Gas Sci Eng 14:204–210

    Article  CAS  Google Scholar 

  49. Nakhaei Pour A, Housaindokht MR (2013) Study of activity, products selectivity and physico-chemical properties of bifunctional Fe/HZSM-5 Fischer–Tropsch catalyst: effect of catalyst shaping. J Nat Gas Sci Eng 14:29–33

    Article  CAS  Google Scholar 

  50. Nakhaei Pour A, Housaindokht MR (2013) Fischer–Tropsch synthesis on iron catalyst promoted with HZSM-5 zeolite: regeneration studies of catalyst. J Nat Gas Sci Eng 14:49–54

    Article  CAS  Google Scholar 

  51. Krishnamoorthy S, Li A, Iglesia E (2002) Pathways for CO2 formation and conversion during Fischer–Tropsch synthesis on iron-based catalysts. Catal Lett 80:77–86

    Article  CAS  Google Scholar 

  52. Nakhaei Pour A, Housaindokht MR, Zarkesh J, Tayyari SF (2010) Studies of carbonaceous species in alkali promoted iron catalysts during Fischer–Tropsch synthesis. J Ind Eng Chem 16:1025–1032

    Article  CAS  Google Scholar 

  53. Dry M (1990) Fischer–Tropsch synthesis over iron catalysts. Catal Lett 7:241–251

    Article  CAS  Google Scholar 

  54. Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J Catal 243:199–211

    Article  CAS  Google Scholar 

  55. Pourghahramani P, Forssberg E (2006) Microstructure characterization of mechanically activated hematite using XRD line broadening. Int J Miner Proc 79:106–119

    Article  CAS  Google Scholar 

  56. Dorner RW, Hardy DR, Williams FW, Willauer HD (2011) C2–C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts. Catal Commun 15:88–92

    Article  CAS  Google Scholar 

  57. Nakhaei Pour A, Shahri SMK, Zamani Y, Zamanian A (2010) Promoter effect on the CO2–H2O formation during Fischer–Tropsch synthesis on iron-based catalysts. J Natl Gas Chem 19:193–197

    Article  Google Scholar 

  58. Burghaus U (2013) Surface science studies of carbon dioxide chemistry. In: Suib SL (ed) New and future developments in catalysis. Elsevier, Amsterdam, pp 27–47

    Chapter  Google Scholar 

  59. Ge Q (2013) Mechanistic understanding of catalytic CO2 activation from first principles theory. In: Suib SL (ed) New and future developments in catalysis. Elsevier, Amsterdam, pp 49–79

    Chapter  Google Scholar 

  60. Ding F, Zhang A, Liu M, Zuo Y, Li K, Guo X, Song C (2014) CO2 hydrogenation to hydrocarbons over iron-based catalyst: effects of physicochemical properties of Al2O3 supports. Ind Eng Chem Res 53:17563–17569

    Article  CAS  Google Scholar 

  61. Nakhaei Pour A, Shahri SMK, Bozorgzadeh HR, Zamani Y, Tavasoli A, Marvast MA (2008) Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis. Appl Catal A 348:201–208

    Article  CAS  Google Scholar 

  62. Steynberg AP, Dry ME, Davis BH, Breman BB (2004) Fischer–Tropsch reactors. In: André S, Mark D (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 64–195

    Google Scholar 

  63. Dry ME, Shingles T, Boshoff LJ, Botha CSH (1970) Factors influencing the formation of carbon on iron Fischer–Tropsch catalysts: II. The effect of temperature and of gases and vapors present during Fischer–Tropsch synthesis. J Catal 17:347–354

    Article  CAS  Google Scholar 

  64. Van der Laan GP, Beenackers AACM (2000) Intrinsic kinetics of the gas–solid Fischer–Tropsch and water gas shift reactions over a precipitated iron catalyst. Appl Catal A 193:39–53

    Article  Google Scholar 

  65. Davis BH (2009) Fischer–Tropsch synthesis: reaction mechanisms for iron catalysts. Catal Today 141:25–33

    Article  CAS  Google Scholar 

  66. Dry ME, Shingles T, Boshoff LJ, Oosthuizen GJ (1969) Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer–Tropsch synthesis. J Catal 15:190–199

    Article  CAS  Google Scholar 

  67. An X, B-s Wu, Wan H-J, Li T-Z, Tao Z-C, Xiang H-W, Li Y-W (2007) Comparative study of iron-based Fischer–Tropsch synthesis catalyst promoted with potassium or sodium. Catal Commun 8:1957–1962

    Article  CAS  Google Scholar 

  68. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts. Catal Lett 77:197–205

    Article  CAS  Google Scholar 

  69. Gaube J, Klein HF (2008) The promoter effect of alkali in Fischer–Tropsch iron and cobalt catalysts. Appl Catal A 350:126–132

    Article  CAS  Google Scholar 

  70. Yang J, Liu Y, Chang J, Wang Y-N, Bai L, Xu Y-Y, Xiang H-W, Li Y-W, Zhong B (2003) Detailed kinetics of Fischer–Tropsch synthesis on an industrial Fe–Mn catalyst. Ind Eng Chem Res 42:5066–5090

    Article  CAS  Google Scholar 

  71. Nakhaei Pour A, Khodabandeh H, Izadyar M, Housaindokht M (2014) Detailed kinetics of Fischer–Tropsch synthesis on a precipitated iron catalyst. Reac Kinet Mech Cat 111:29–44

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nakhaei Pour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei Pour, A., Karimi, J., Housaindokht, M. et al. Structure sensitivity evaluation of catalytic CO2 hydrogenation to higher hydrocarbons by an iron catalyst. Reac Kinet Mech Cat 122, 605–624 (2017). https://doi.org/10.1007/s11144-017-1242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1242-7

Keywords

Navigation