Skip to main content
Log in

Experimental estimation of the atmospheric lifetimes of CF2HI, CF3CH2I, CF3(CH2)2I and CF3(CH2)3I with removal via the sunlight photolysis and the reactions with NO3

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Hydroiodofluorocarbons (HIFCs) have recently attracted attention as new candidates for replacements for chlorofluorocarbons and bromofluorocarbons. Thus, it is very important for the practical and industrial use of HIFCs to know the atmospheric removal processes of HIFCs emitted into the atmosphere. In this study, the absorption spectra of difluoroiodomethane (CF2HI), 1,1,1-trifluoro-2-iodoethane (CF3CH2I), 1,1,1-trifluoro-3-iodopropane [CF3(CH2)2I] and 1,1,1-trifluoro-4-iodobutane [CF3(CH2)3I] were experimentally determined to estimate the lifetimes of the removals from the atmosphere by the sunlight photolysis. The absorption maxima for these HIFCs are at ~262 nm and their peak absorption cross sections range from 6.8 × 10−19 to 8.5 × 10−19 cm2 molecule−1. These results suggest that the lifetimes of the studied HIFCs by solar photolysis are ranged from 7.2 to 14 h. The reactions of NO3 with the four HIFCs were also investigated using time-resolved cavity ring-down spectroscopy. The rate constant values of (4.3 ± 1.1), (5.5 ± 2.7), (6.6 ± 3.7), (9.5 ± 3.1) × 10−14 cm3 molecule−1 s−1 have been determined for the reactions of NO3 with CF2HI, CF3CH2I, CF3(CH2)2I and CF3(CH2)3I at 298 K and 100 Torr of total pressure (the errors designate 2σ statistical uncertainty). The determined values of the rate constants suggest that the lifetimes of the studied four HIFCs with respect to reactions with NO3 range from 12 to 26 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Solomon S, Burkholder JB, Ravishankara AR, Garcia RR (1994) J Geophys Res Atmos 99:20929–20935

    Article  Google Scholar 

  2. Montreal Protocol on Substances that Deplete the Ozone Layer. UNEP 1987. http://ozone.unep.org/en/treaties-and-decisions/montreal-protocol-substances-deplete-ozone-layer. Accessed 22 May 2017

  3. Nakano Y, Sadamori K, Ishiwata T (2012) Int J Chem Kinet 44:649–660

    Article  CAS  Google Scholar 

  4. Gilles MK, Talukdar RK, Ravishankara AR (2000) J Phys Chem A 104:8945–8950

    Article  CAS  Google Scholar 

  5. Nakano Y, Ishiwata T, Kawasaki M (2005) J Phys Chem A 109:6527–6531

    Article  CAS  Google Scholar 

  6. Cotter ESN, Canosa-Mas CE, Manners CR, Wayne RP, Shallcross DE (2003) Atmos Environ 37:1125–1133

    Article  Google Scholar 

  7. Nakano Y, Ukeguchi H, Ishiwata T (2006) Chem Phys Lett 430:235–239

    Article  CAS  Google Scholar 

  8. Nakano Y, Ukeguchi H, Ishiwata T, Kanaya Y, Tachikawa H, Ikeda A, Sakaki S, Kawasaki M (2008) Bull Chem Soc Jpn 81:938–946

    Article  CAS  Google Scholar 

  9. Nakano Y, Sadamori K, Hosho Y, Ishiwata T (2011) Chem Phys Lett 513:27–30

    Article  CAS  Google Scholar 

  10. Nakano Y, Hosho Y, Sadamori K, Ishiwata T (2012) Chem Phys Lett 535:26–29

    Article  CAS  Google Scholar 

  11. Caesar GV, Goldfrank M (1946) J Am Chem Soc 68:372–375

    Article  CAS  Google Scholar 

  12. Burkholder JB, Sander SP, Abbatt J, Barker JR, Huie RE, Kolb CE, Kurylo MJ, Orkin VL, Wilmouth DM, Wine PH (2015) Chemical kinetics and photochemical data for use in atmospheric studies, evaluation no. 18. JPL Publication 15-10. Jet Propulsion Laboratory, Pasadena. http://jpldataeval.jpl.nasa.gov. Accessed 22 May 2017

  13. Boschi RA, Salahub DR (1972) Mol Phys 24:289–299

    Article  CAS  Google Scholar 

  14. Tapscott RE, Nimitz JS, Skadds SR, Walters EA, Arneberg DL (1995) Halocarbons as halon replacements. Phase 2, vol 3. Laboratory testing of halon 1211 replacements. No. NMERI-SS-2.03 (3). New Mexico Engineering Research Inst., Albuquerque

  15. Chase MW Jr (1998) J Phys Chem Ref Data Monogr 9:1–1951

    Google Scholar 

  16. Cox JD, Pilcher G (1970) Thermochemistry of organic and organometallic compounds. Academic, New York, pp 1–636

    Google Scholar 

  17. Sander SP (1986) J Phys Chem 90:4135–4142

    Article  CAS  Google Scholar 

  18. Yokelson RJ, Burkholder JB, Fox RW, Talukdar RK, Ravishankara AR (1994) J Phys Chem 98:13144–13150

    Article  CAS  Google Scholar 

  19. Ravishankara AR, Wine PH, Smith CA, Barbone PE, Torabi AJ (1986) Geophys Res 91:5355–5360

    Article  CAS  Google Scholar 

  20. Ammann M, Cox RA, Crowley JN, Jenkin ME, Mellouki A, Rossi MJ, Troe J, Wallington TJ (2013) IUPAC summary of evaluated kinetic and photochemical data for atmospheric chemistry. http://iupac.pole-ether.fr/. Accessed 22 May 2017

  21. Biggs P, Canosa-Mas CE, Fracheboud JM, Shallcross DE, Wayne RP (1994) J Chem Soc Faraday Trans 90:1197–1204

    Article  CAS  Google Scholar 

  22. Biggs P, Canosa-Mas CE, Fracheboud JM, Shallcross DE, Wayne RP (1995) J Chem Soc Faraday Trans 91:817–825

    Article  CAS  Google Scholar 

  23. Chambers RM, Heard AC, Wayne RP (1992) J Phys Chem 96:3321–3331

    Article  CAS  Google Scholar 

  24. Dillon TJ, Tucceri ME, Sander R, Crowley JN (2008) Phys Chem Chem Phys 10:1540–1554

    Article  CAS  Google Scholar 

  25. Vaughan S, Canosa-Mas CE, Pfrang C, Shallcross DE, Watson L, Wayne RP (2006) Phys Chem Chem Phys 8:3749–3760

    Article  CAS  Google Scholar 

  26. Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere. Academic, San Diego, p 66

    Google Scholar 

  27. Saiz-Lopez A, Plane JMC (2004) Geophys Res Lett 31:L04112

    Google Scholar 

  28. Benton AK, Langridge JM, Ball SM, Bloss WJ, Dall’Osto M, Nemitz E, Harrison RM, Jones RL (2010) Atmos Chem Phys 10:9781–9795

    Article  CAS  Google Scholar 

  29. Biermann HW, Tuazon EC, Winer AM, Wallington TJ, Pitts JN Jr (1988) Atmos Environ 22:1545–1554

    Article  CAS  Google Scholar 

  30. Platt U, Perner D, Winer AM, Harris GW, Pitts JN Jr (1980) Geophys Res Lett 7:87–92

    Article  Google Scholar 

  31. Platt U, Perner D, Schroder J, Kessler C, Toennissen A (1981) J Geophys Res 86:11965–11970

    Article  CAS  Google Scholar 

  32. Platt U, Janssen C (1995) Faraday Discuss 100:175–198

    Article  CAS  Google Scholar 

  33. World Meteorological Organization, WMO (2014) Scientific assessment of ozone depletion: 2014. World Meteorological Organization, global ozone research and monitoring project-report no. 55. https://www.wmo.int/pages/prog/arep/gaw/ozone_2014/full_report_TOC. Accessed 22 May 2017

  34. Enami S, Ueda J, Goto M, Nakano Y, Aloisio S, Hashimoto S, Kawasaki M (2004) J Phys Chem A 108:6347–6350

    Article  CAS  Google Scholar 

  35. Enami S, Yamanaka T, Hashimoto S, Kawasaki M, Tonokura K, Tachikawa H (2007) Chem Phys Lett 445:152–156

    Article  CAS  Google Scholar 

  36. Alicke B, Hebestreit K, Stutz J, Platt U (1999) Nature 397:572–573

    Article  CAS  Google Scholar 

  37. Allan BJ, McFiggans G, Plane JMC, Coe H (2000) J Geophys Res Atmos 105:14363–14369

    Article  CAS  Google Scholar 

  38. Davis DJ, Crawford J, Liu S, McKeen S, Bandy A, Thornton D, Rowland F, Blake D (1996) J Geophys Res Atmos 101:2135–2147

    Article  CAS  Google Scholar 

  39. McFiggans G, Plane JMC, Allan BJ, Carpenter LJ, Coe H, O’Dowd CD (2000) J Geophys Res Atmos 105:14371–14385

    Article  CAS  Google Scholar 

  40. Cronkhite JM, Stickel RE, Nicovich JM, Wine PH (1999) J Phys Chem A 103:3228–3236

    Article  CAS  Google Scholar 

  41. Carpenter LJ (2003) Chem Rev 103:4953–4962

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Matsuda, M. Tomomatsu, T. Horiguchi and M. Sasaoka for their helps with experiments. This work was supported by Grant-in-Aids for Scientific Research from Japan Society for the Promotion of Science (JSPS) No. 25340003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Nakano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, Y., Shibata, Y. & Watanabe, K. Experimental estimation of the atmospheric lifetimes of CF2HI, CF3CH2I, CF3(CH2)2I and CF3(CH2)3I with removal via the sunlight photolysis and the reactions with NO3 . Reac Kinet Mech Cat 122, 3–19 (2017). https://doi.org/10.1007/s11144-017-1231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1231-x

Keywords

Navigation