Skip to main content
Log in

Synthesis, characterization and catalytic activity of a heterogeneous copper Schiff base complex supported on iron oxide nanoparticles for the oxidation of olefins

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Initially, iron oxide nanoparticles (Fe3O4) were prepared and modified with tetraethoxysilane (TEOS). (3-Aminopropyl) trimethoxysilane (APTMS) and 2-hydroxybenzophenone were subsequently used to prepare Schiff base ligands on the surface of the nanoparticles. These modified nanoparticles were used in the synthesis of a copper Schiff base complex as a heterogeneous catalyst. The prepared catalyst was characterized using Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma optical emission spectrometry (ICP-OES) and vibrating sample magnetometer (VSM) techniques. This catalyst was deployed in styrene, α-methyl styrene, cyclohexene and cyclooctene oxidation. In order to determine the optimum conditions, the following factors were investigated: time, solvent, amount of catalyst and oxidant. Under optimized conditions, the 100% conversion of styrene and α-methyl styrene with selectivities of benzaldehyde (71.4%) and acetophenone (67.7%) formation was obtained in a short reaction time (2 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang N, Fan YH, Zhang Z, Zuo J, Zhang PF, Wang Q, Liu SB, Bi CF (2012) Inorg Chem Commun 22:68–72

    Article  Google Scholar 

  2. Cavell RG, Aparna K, Kamalesh Babu RP, Wang Q (2002) J Mol Catal A: Chem 189:137–143

    Article  CAS  Google Scholar 

  3. Tang Z, Chen X, Pang X, Yang Y, Zhang X, Jing X (2004) Biomacromolecules 5:965–970

    Article  CAS  Google Scholar 

  4. Islam SM, Roy AS, Mondal P, Salam N (2012) Appl Organomet Chem 26:625–634

    Article  CAS  Google Scholar 

  5. Islam SM, Mondal P, Roy AS, Tuhina K (2010) J Mater 45:2484–2493

    Article  CAS  Google Scholar 

  6. Nielson LPC, Stevenson CP, Backmond DG, Jacobsen EN (2004) J Am Chem Soc 126:1360–1362

    Article  Google Scholar 

  7. Clercq BD, Verpoort F (2002) J Mol Catal A: Chem 180:67–76

    Article  Google Scholar 

  8. Li Z, Fernández M, Jacobsen EN (1999) Org Lett 1:1611–1613

    Article  CAS  Google Scholar 

  9. Gupta KC, Sutar AK (2008) Coord Chem Rev 252:1420–1450

    Article  CAS  Google Scholar 

  10. Rayati S, Koliaei M, Ashouri F, Mohebbi S, Wojtczak A, Kozakiewicz A (2008) Appl Catal A 346:65–71

    Article  CAS  Google Scholar 

  11. Lopez J, Liang S, Bu XR (1998) Tetrahedron Lett 39:4199–4202

    Article  CAS  Google Scholar 

  12. Li Y, Fu X, Gong B, Zou X, Tu X, Chen J (2010) J Mol Catal A: Chem 322:55–62

    Article  CAS  Google Scholar 

  13. Li ZY, Tang RR, Liu GY (2013) Catal Lett 143:592–599

    Article  CAS  Google Scholar 

  14. Gupta KC, AbdulKadir HK, Chand S (2002) Macromol Sci A Pure Appl Chem 39:1451–1474

    Article  Google Scholar 

  15. Jin C, Fan W, Jia Y, Fan B, Ma J, Li R (2006) J Mol Catal A: Chem 249:23–30

    Article  CAS  Google Scholar 

  16. Li X, Fang Y, Zhou X, Ma J, Li R (2015) Mater Chem Phys 156:9–15

    Article  CAS  Google Scholar 

  17. Si J, Yang H (2011) Mater Chem Phys 128:519–524

    Article  CAS  Google Scholar 

  18. Esmaeilpour M, Sardarian AR, Javidi J (2014) J Organomet Chem 749:233–240

    Article  CAS  Google Scholar 

  19. Moradi-Shoeili Z (2016) Reac Kinet Mech Cat. doi:10.1007/s11144-016-1085-7

    Google Scholar 

  20. Gawande MB, Brancoa PS, Varma RS (2013) Chem Soc Rev 42:3371–3393

    Article  CAS  Google Scholar 

  21. Mürbe J, Rechtenbach A, Töpfer J (2008) Mater Chem Phys 110:426–433

    Article  Google Scholar 

  22. Hu A, Yee GT, Lin W (2005) J Am Chem Soc 127:12486–12487

    Article  CAS  Google Scholar 

  23. Ghorbani-Choghamarani A, Darvishnejad Z, Tahmasbi B (2015) Inorg Chim Acta 435:223–231

    Article  CAS  Google Scholar 

  24. Keypour H, Balali M, Haghdoost MM, Bagherzadeh M (2015) RSC Adv 5:53349–53356

    Article  CAS  Google Scholar 

  25. Wang D, Astruc D (2014) Chem Rev 114:6949–6985

    Article  CAS  Google Scholar 

  26. Liu X, Ma Z, Xing J, Liu H (2004) J Magn Magn Mater 270:1–6

    Article  CAS  Google Scholar 

  27. Tajbakhsh M, Farhang M, Hosseinzadeh R, Sarrafi Y (2014) RSC Adv 4:23116–23124

    Article  CAS  Google Scholar 

  28. Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010) J Colloid Interface Sci 349:293–299

    Article  CAS  Google Scholar 

  29. Dehghani F, Sardarian AR, Esmaeilpour M (2013) J Organomet Chem 743:87–96

    Article  CAS  Google Scholar 

  30. Esmaeilpour M, Sardarian AR, Javidi J (2012) Appl Catal A 445–446:359–367

    Article  Google Scholar 

  31. Zhao W, Yang C, Cheng Z, Zhang Z (2016) Green Chem 18:995–998

    Article  CAS  Google Scholar 

  32. Farzaneh F, Sadeghi Y (2015) J Mol Catal A: Chem 398:275–281

    Article  CAS  Google Scholar 

  33. Chen L, Li B, Liu D (2014) Catal Lett 144:1053–1061

    Article  CAS  Google Scholar 

  34. Rahimi R, Maleki A, Maleki S (2014) Chin Chem Lett 25:919–922

    Article  CAS  Google Scholar 

  35. Maurya MR, Chandrakar AK, Chand S (2007) J Mol Catal A: Chem 263:227–237

    Article  CAS  Google Scholar 

  36. Karandikar P, Dhanya KC, Deshpande S, Chandwadkar AJ, Sivasanker S, Agashe M (2004) Catal Commun 5:69–74

    Article  CAS  Google Scholar 

  37. Islam SM, Roy AS, Mondal P, Paul S, Salam N (2012) Inorg Chem Commun 24:170–176

    Article  CAS  Google Scholar 

  38. Nandi M, Roy P, Uyama H, Bhaumik A (2011) Dalton Trans 40:12510–12518

    Article  CAS  Google Scholar 

  39. Islam SM, Roy AS, Mondal P, Salam N (2012) J Inorg Organomet Polym 22:717–730

    Article  CAS  Google Scholar 

  40. Hamidipour L, Farzaneh F, Ghandi M (2012) Reac Kinet Mech Catal 107:421–433

    Article  CAS  Google Scholar 

  41. Junghans U, Suttkus C, Lincke J, Lassig D, Krautscheid H, Glaser R (2015) Microporous Mesoporous Mater 216:151–160

    Article  CAS  Google Scholar 

  42. Yao HF, Yang Y, Liu H, Xi FG, Gao EQ (2014) J Mol Catal A: Chem 394:57–65

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance from Alzahra University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Lashanizadegan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashanizadegan, M., Alavijeh, R.K. & Sarkheil, M. Synthesis, characterization and catalytic activity of a heterogeneous copper Schiff base complex supported on iron oxide nanoparticles for the oxidation of olefins. Reac Kinet Mech Cat 120, 579–591 (2017). https://doi.org/10.1007/s11144-017-1136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1136-8

Keywords

Navigation