Skip to main content
Log in

Methanol conversion to light olefins over surfactant-modified nanosized SAPO-34

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Ultrasonic and microwave-assisted aging processes were employed in the static hydrothermal synthesis of nanosized SAPO-34 molecular sieve. A series of nanosized hierarchical SAPO-34 samples with different degrees of mesoporosity were utilized to investigate the impacts of mesoporosity on the catalytic performance of the methanol to olefins (MTO) reaction. The so-called series were synthesized in the presence of various mesogenous templates, such as TPOAC, CTAB, and their combinations. These SAPO-34 samples were characterized by XRD, FE-SEM, BET, FT-IR and NH3-TPD techniques. The catalytic activities were studied in a fixed-bed reactor under atmospheric pressure, 450 °C and WHSV of 4 h−1. Comprehending the results, it can be said that in comparison with the typical catalysts, reliable MTO catalytic lifetime (420 min) as well as sufficiently high light olefins selectivity (90 %) was obtained through the nanosized hierarchical porous SAPO-34 templated with a mixture of 50 % CTAB and 50 % TPOAC. This achievement is associated to its effective combination of acidity and porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim J-Y, Kim J, Yang S-T, Ahn W-S (2013) Mesoporous SAPO-34 with amine-grafting for CO2 capture. Fuel 108:515–520

    Article  CAS  Google Scholar 

  2. Chen D, GrØnvold A, Moljord K, Holmen A (2007) Methanol conversion to light olefins over SAPO-34: reaction network and deactivation kinetics. Ind Eng Chem Res 46:4116–4123

    Article  CAS  Google Scholar 

  3. Nishiyama N, Kawaguchi M, Hirota Y, Van Vu D, Egashira Y, Ueyama K (2009) Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction. Appl Catal A Gen 362:193–199

    Article  CAS  Google Scholar 

  4. Razavian M, Halladj R, Askari S (2011) Recent advances in silicoaluminophosphate nanocatalysts synthesis techniques and their effects on particle size distribution. Rev Adv Mater Sci 29:83–99

    CAS  Google Scholar 

  5. Yang G, Wei Y, Xu S, Chen J, Li J, Li Z, Yu J, Xu R (2013) Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem 117:8214–8222

    CAS  Google Scholar 

  6. Hajiashrafi T, Nemati Kharat A, Dauth A, Lewis AR, Love JA (2014) Preparation and characterization of lanthanide modified SAPO-34 nanocatalysts and measurement of their activity for methanol to olefin conversion. React Kinet Mech Cat 113:585–603

    Article  CAS  Google Scholar 

  7. Li H, Li H, Guo Zh, Liu Y (2006) The application of power ultrasound to reaction crystallization. Ultrason Sonochem 13:359–363

    Article  Google Scholar 

  8. Wu L, Liu Z, Qiu M, Yang C, Xia L, Liu X, Sun Y (2014) Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction. Reac Kinet Mech Cat 111:319–334

    Article  CAS  Google Scholar 

  9. Yang S-T, Kim J-Y, Chae H-J, Kim M, Jeong S-Y, Ahn W-S (2012) Microwave synthesis of mesoporous SAPO-34 with a hierarchical pore structure. Mater Res Bull 47:3888–3892

    Article  CAS  Google Scholar 

  10. Park DH, Kim SS, Wang H, Pinnavaia TJ, Papapetrou MC, Lappas AA, Triantafyllidis KS (2009) Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores. Angew Chem Int Ed 121:7781–7784

    Article  Google Scholar 

  11. Choi M, Cho HS, Srivastava R, Venkatesan C, Choi DH, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723

    Article  CAS  Google Scholar 

  12. Jun JW, Lee JS, Seok HY, Chang JS, Hwang JS, Jhung SH (2011) A Facile synthesis of SAPO-34 molecular sieves with microwave irradiation in wide reaction conditions. Bull Korean Chem Soc 32:1957–1964

    Article  CAS  Google Scholar 

  13. Zhu J, Meng X, Xiao F (2013) Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Front Chem Sci Eng 7:233–248

    Article  CAS  Google Scholar 

  14. Izadbakhsh A, Khatami A (2014) Mathematical modeling of methanol to olefin conversion over SAPO-34 catalyst using the percolation concept. Reac Kinet Mech Cat 112:77–100

    Article  CAS  Google Scholar 

  15. Zhu Y, Hua Z, Song Y, Wu W, Zhou X, Zhou J, Shi J (2013) Highly chemoselective esterification for the synthesis of monobutyl itaconate catalyzed by hierarchical porous zeolites. J Catal 299:20–29

    Article  CAS  Google Scholar 

  16. Wang H, Pinnavaia TJ (2006) MFI zeolite with small and uniform intracrystal mesopores. Angew Chem Int Ed 45:7603–7606

    Article  CAS  Google Scholar 

  17. Xia Y, Mokaya R (2006) Crystalline-like molecularly ordered mesoporous aluminosilicates derived from aluminosilica–surfactant mesophases via benign template removal. J Phys Chem B 110(18):9122–9131

    Article  CAS  Google Scholar 

  18. Li H, Wu H, Shi JL (2013) Competition balance between mesoporous self-assembly and crystallization of zeolite: a key to the formation of mesoporous zeolite. J Alloys Comp 556:71–78

    Article  CAS  Google Scholar 

  19. Singh AK, Yadav R, Sakthivel A (2013) Synthesis, characterization, and catalytic application of mesoporous SAPO-34 (MESO-SAPO-34) molecular sieves. Microporous Mesoporous Mater 181:166–174

    Article  CAS  Google Scholar 

  20. Wu L, Hensen EJM (2014) Comparison of mesoporous SSZ-13 and SAPO-34 zeolite catalysts for the methanol-to-olefins reaction. Catal Today 235:160–168

    Article  CAS  Google Scholar 

  21. Sun Q, Wang N, Xi D, Yang M, Yu J (2014) Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem Commun 50:6502–6505

    Article  CAS  Google Scholar 

  22. Sharifi Pajaie H, Taghizadeh M (2015) Optimization of nano-sized SAPO-34 synthesis in methanol-to-olefin reaction by response surface methodology. J Ind Eng Chem 24:59–70

    Article  CAS  Google Scholar 

  23. Abdollahi S, Ghavipour M, Nazari M, Behbahani RM, Moradi GR (2015) Effects of static and stirring aging on physiochemical properties of SAPO-18 and its performance in MTO process. J Nat Gas Sci Eng 22:245–251

    Article  CAS  Google Scholar 

  24. Xu L, Tian P, Liu Zh, Yang L, Meng S, He C, Yuan C, Qi Y (2013) Sapo-34 molecular sieve having both micropores and mesopores and synthesis methods thereof. US Patent 20130287680 A1

  25. Kruck M, Jaroniec M, Sayari A (1997) Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13:6267–6273

    Article  Google Scholar 

  26. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemienewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  27. Kruck M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183

    Article  Google Scholar 

  28. Occelli ML, Olivier JP, Perdigon-Melon JA, Auroux A (2002) Surface area, pore volume distribution, and acidity in mesoporous expanded clay catalysts from hybrid density functional theory (DFT) and adsorption microcalorimetry methods. Langmuir 18:9816–9823

    Article  CAS  Google Scholar 

  29. Zhang P, Wang L, Ren L, Zhu L, Sun Q, Zhang J, Meng X, Xiao F-Sh (2011) Solvent-free synthesis of thermally stable and hierarchically porous aluminophosphates (SF-APOs) and heteroatom-substituted aluminophosphates (SF-MAPOs). J Mater Chem 21:12026–12033

    Article  CAS  Google Scholar 

  30. Charghand M, Haghighi M, Aghamohammadi S (2014) The beneficial use of ultrasound in synthesis of nanostructured Ce-doped SAPO-34 used in methanol conversion to light olefins. Ultrason Sonochem 21:1827–1838

    Article  CAS  Google Scholar 

  31. Jhung SH, Chang JS, Hwang JS, Park SE (2003) Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous Mesoporous Mater 64:33–39

    Article  CAS  Google Scholar 

  32. Tan J, Liu Zh, Bao X, Liu X, Han X, He Ch, Zhai R (2002) Crystallization and Si incorporation mechanisms of SAPO-34. Microporous Mesoporous Mater 53:97–108

    Article  CAS  Google Scholar 

  33. Chae HJ, Park IJ, Song YH, Jeong KE, Kim CU, Shin CH, Jeong SY (2010) Physicochemical characteristics of SAPO-34 molecular sieves synthesized with mixed templates as MTO catalysts. J Nanosci Nanotechnol 10:195–202

    Article  CAS  Google Scholar 

  34. Svelle S, Aravinthan S, BjUrgen M, Lillerud KP, Kolboe S, Dahl IM, Olsbye U (2006) The methyl halide to hydrocarbon reaction over H-SAPO-34. J Catal 241:243–254

    Article  CAS  Google Scholar 

  35. Kong L, Jiang Z, Zhao J, Liu J, Shen B (2014) The synthesis of hierarchical SAPO-34 and its enhanced catalytic performance in chloromethane conversion to light olefins. Catal Lett 144:1609–1616

    Article  CAS  Google Scholar 

  36. Borade RB, Clearfield A (1994) A comparative study of acidic properties of SAPO-5, −11, −34 and −37 molecular sieves. J Mol Catal 88:249–265

    Article  CAS  Google Scholar 

  37. Beale AM, O’Brien MG, Kasuni M, Golobi A, Sanchez-Sanchez M, Lobo AJW, Lewis DW, Wragg DS, Nikitenko S, Bras W, Weckhuysen BM (2011) Probing ZnAPO-34 self-assembly using simultaneous multiple in situ techniques. J Phys Chem C 115:6331–6340

    Article  CAS  Google Scholar 

  38. Ye L, Cao F, Ying W, Fang D, Sun Q (2011) Effect of different TEAOH/DEA combinations on SAPO-34’s synthesis and catalytic performance. J Porous Mater 18:225–232

    Article  CAS  Google Scholar 

  39. Liu G, Peng T, Xia Q, Liu Z (2012) An effective route to improve the catalytic performance of SAPO-34 in the methanol-to-olefin reaction. J Nat Gas Chem 21:431–434

    Article  CAS  Google Scholar 

  40. Li Z, Martınez-Triguero J, Concepcion P, Yu J, Corma A (2013) Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Phys Chem Chem Phys 15:14670–14680

    Article  CAS  Google Scholar 

  41. Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Feng YZ (2009) Effect of SAPO-34′s composition on its physico-chemical properties and deactivation in MTO process. Appl Catal A Gen 364:48–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Iranian Nanotechnology Initiative Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Taghizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi Pajaie, H., Taghizadeh, M. Methanol conversion to light olefins over surfactant-modified nanosized SAPO-34. Reac Kinet Mech Cat 118, 701–717 (2016). https://doi.org/10.1007/s11144-016-1023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1023-8

Keywords

Navigation