Skip to main content
Log in

Catalytic activity of vanadium oxide catalysts prepared by electrodeposition for the selective catalytic reduction of nitrogen oxides with ammonia

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A facile synthesis of nanostructured vanadium oxide catalysts grown inside a honeycomb ceramic filter by electrodeposition without heat treatment is reported. The prepared catalysts are investigated for a selective catalytic reduction (SCR) of nitrogen oxide (NOx) with ammonia (NH3) in the temperature ranges from 250 to 450 °C. The SCR test results indicate that the NOx removal efficiency of the as-deposited sample is comparable to that of the sample heat treated at 600 °C as well as that of the sample prepared by conventional wash coating method. The nanostructured catalysts show similar NOx removal efficiencies after several recycles. Both polycrystalline and amorphous phases co-exist in the electrodeposited V-oxide catalysts confirmed by X-ray diffraction and selective area electron diffraction. The V-oxide catalysts show stronger V=O bond peaks and higher ratio of V4+/V5+ and Oα/Oβ on their surfaces as characterized by Raman spectroscopy and X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bosch H, Janssen F (1988) Catal Today 2(4):369–531

    Article  CAS  Google Scholar 

  2. Uddin MA, Shimizu K, Ishibe K, Sasaoka E (2009) J Mol Catal A 309:178–183

    Article  CAS  Google Scholar 

  3. Heck RM (1999) Catal Today 53(4):519–523

    Article  CAS  Google Scholar 

  4. Jemal J, Tounsi H, Djemel S, Pettito C, Delahay G (2013) Reac Kinet Mech Cat 109:159–165

    Article  CAS  Google Scholar 

  5. Spahr ME, Stoschitzki-Bitterli P, Nesper R, Haas O, Novak P (1999) J Electrochem Soc 146:2780–2783

    Article  CAS  Google Scholar 

  6. Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A (1999) Appl Catal B 22:63–77

    Article  CAS  Google Scholar 

  7. Phil HH, Reddy MP, Kumar PA, Ju LK, Hyo JS (2008) Appl Catal B 78:301–308

    Article  CAS  Google Scholar 

  8. Maćkiewicz E, Szynkowska MI (2013) Reac Kinet Mech Cat 111:763–773

    Article  Google Scholar 

  9. Reddy BM, Ganesh I, Khan A (2003) Appl Catal A 248:169–180

    Article  CAS  Google Scholar 

  10. Chang H, Li J, Chen X, Ma L, Yang S, Schwank JW, Hao J (2012) Catal Commun 27:54–57

    Article  CAS  Google Scholar 

  11. Rodella CB, Mastelaro VR (2003) J Phys Chem Solids 64:833–839

    Article  CAS  Google Scholar 

  12. Jo S-H, Shin B, Shin M-C, Van Tyne CJ, Lee H (2014) Catal Commun 57:134–137

    Article  CAS  Google Scholar 

  13. Serrà A, Gómez E, Calderó G, Esquena J, Solans C, Vallés E (2014) J Electroanal Chem 720–721:101–106

    Article  Google Scholar 

  14. Nishimura T, Nakade T, Morikawa T, Inoue H (2014) Electrochim Acta 129:152–159

    Article  CAS  Google Scholar 

  15. Lu H, Zheng F, Zhang M, Guo M (2014) Electrochim Acta 132:370–376

    Article  CAS  Google Scholar 

  16. Cao G, Liu D (2008) Adv Colloid Interface Sci 136:45–64

    Article  CAS  Google Scholar 

  17. Potiron E, Salle ALGL, Verbaere A, Piffard Y, Guyomard D (1999) Electrochim Acta 45:197–214

    Article  CAS  Google Scholar 

  18. Schimmoeller B, Delaigle R, Debecker DP, Gaigneaux EM (2010) Catal Today 157:198–203

    Article  CAS  Google Scholar 

  19. Kwon DW, Park KH, Hong SC (2013) Appl Catal A 451:227–235

    Article  CAS  Google Scholar 

  20. Lázaro MJ, Boyano A, Herrera C, Larrubia MA, Alemany LJ, Moliner R (2009) Chem Eng J 155:68–75

    Article  Google Scholar 

  21. Rao PSN, Kumar SA, Prasad PSS, Lingaiah N (2012) Reac Kinet Mech Cat 105:429–440

    Article  CAS  Google Scholar 

  22. Yang J, Yang Q, Sun J, Liu Q, Zhao D, Gao W, Liu L (2015) Catal Commun 59:78–82

    Article  CAS  Google Scholar 

  23. Larachi F, Pierre J, Adnot A, Bernis A (2002) Appl Surf Sci 195:236–250

    Article  CAS  Google Scholar 

  24. Kang M, Park ED, Kim JM, Yie JE (2007) Appl Catal A 327:261–269

    Article  CAS  Google Scholar 

  25. Liu B, Du J, Lv X, Qiu Y, Tao C (2015) Catal Sci Technol 5:1241–1250

    Article  CAS  Google Scholar 

  26. Jin R, Liu Y, Wu Z, Wang H, Gu T (2010) Chemosphere 78:1160–1166

    Article  CAS  Google Scholar 

  27. Svachula J, Alemany LJ, Ferlazzo N, Forzatti P, Tronconi E, Bregani F (1993) Ind Eng Chem Res 32:826–834

    Article  CAS  Google Scholar 

  28. Kamata H, Ohara H, Takahashi K, Yukimura A, Seo Y (2001) Catal Lett 73:79–83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (2015R1A2A1A15053002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Keun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Cha, J.S., Jeon, Y.S. et al. Catalytic activity of vanadium oxide catalysts prepared by electrodeposition for the selective catalytic reduction of nitrogen oxides with ammonia. Reac Kinet Mech Cat 118, 633–641 (2016). https://doi.org/10.1007/s11144-016-1010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1010-0

Keywords

Navigation