Skip to main content
Log in

Composition and catalytic behavior in CO oxidation of biogenic iron-containing materials

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The composition of biomasses obtained by the cultivation of Leptothrix genus bacteria in Adler, Fedorov, and Lieske nutrition media has been studied by infrared and Mössbauer spectroscopy. The catalytic activity of the biogenic materials in the reaction of CO oxidation was tested using in situ diffuse-reflectance infrared spectroscopy. The fresh materials contained α-FeOOH, γ-FeOOH, and γ-Fe2O3 at different ratios, one component being predominant. A noticeable catalytic activity of all samples was registered at 250 °C. The catalytic performance depended on FeOOH → Fe2O3 transitions. Spent samples contained mixtures of α-FeOOH and γ-FeOOH as well as α-Fe2O3 and γ-Fe2O3. The catalytic activity up to 200 °C was assigned to the oxyhydroxides, whereas that at 250 °C is a result of α-Fe2O3 and γ-Fe2O3 formation during the process. The oxyhydroxides showed low catalytic activity in the applied reaction, maghemite exhibited a moderate catalytic activity, whereas hematite activity was commensurate with that of the oxyhydroxides. The catalytic activity in CO oxidation was inherent for biogenic maghemite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Narayanan KB, Sakthivel N (2010) Adv Colloid Interface Sci 156:1–13

    Article  CAS  Google Scholar 

  2. Jung H, Kim J-W, Choi H, Lee J-H, Hur H-G (2008) Appl Catal B 83:208–213

    Article  CAS  Google Scholar 

  3. Kazprzyk-Hordern B, Ziolek M, Nawrocik J (2003) Appl Catal B 46:639–669

    Article  Google Scholar 

  4. Seabra AB, Haddad P, Duran N (2013) IET Nanobiotechnol 7:90–99

    Article  CAS  Google Scholar 

  5. Shahwan T, Abu Sirriah S, Nairat M, Boyaci E, Eroglu AE, Scott TB, Hallam KR (2011) Chem Eng J 172:258–266

    Article  CAS  Google Scholar 

  6. Harshiny M, Iswarya CN, Matheswaran M (2015) Powder Technol 286:744–749

    Article  CAS  Google Scholar 

  7. Schwertmann U, Cornell R (1991) Iron oxides in the laboratory: preparation and characterization. VCH, Weinheim

    Google Scholar 

  8. Rodriguez JA, Fernandez-Garcia M (eds) (2007) Synthesis, properties, and application of oxide nanomaterials. Wiley, Hoboken

    Google Scholar 

  9. Ema T, Miyazaki Y, Kozuki I, Sakai T, Hashimoto H, Takada J (2011) Green Chem 13:3187–3195

    Article  CAS  Google Scholar 

  10. Kumar B, Smita K, Cumbal L, Debut A (2014) J Saudi Chem Soc 18:364–369

    Article  Google Scholar 

  11. Alharthi A, Blackley RA, Flowers TH, Hergreaves JSJ, Pulford ID, Wigzell J, Zhou W (2014) Iron ochre—a pre-catalyst for the cracking of methane. J Chem Technol Biotechnol. doi:10.1002/jctb.4434

    Google Scholar 

  12. Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) J Mater Chem 19:8671–8677

    Article  CAS  Google Scholar 

  13. Anghel L, Duca G (2013) Chem J Mold 8:32–41

    CAS  Google Scholar 

  14. Li X, Xu H, Chen Z-S, Chen G (2011) J Nanomater. doi:10.1155/2011/270974

    Google Scholar 

  15. Ahmmad B, Leonard K, Islam MDS, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y (2013) Adv Powder Technol 24:160–167

    Article  CAS  Google Scholar 

  16. Kumar CSSR (2009) Nanomaterials for the life sciences. Vol. 2: nanostructured oxides. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim

    Google Scholar 

  17. Hashimoto H, Yokoyama S, Asaoka H, Kusano Y, Ikeda Y, Seno M, Takada J, Fujii T, Nakanishi M, Murakami R (2007) J Magnet Magnet Mater 310:2405–2407

    Article  CAS  Google Scholar 

  18. Sakai T, Miyazaki Y, Murakami A, Sakamoto N, Ema T, Hashimoto H, Furutani M, Nakanishi M, Fujiia T, Takada J (2010) Org Biomol Chem 8:336–338

    Article  CAS  Google Scholar 

  19. Xin B, Zhang D, Zhang X, Xia Y, Wu F, Chen S, Li L (2009) Bioresour Technol 100:6163–6169

    Article  CAS  Google Scholar 

  20. Rentz JA, Turner IP, Ullman JL (2009) Water Res 43:2029–2035

    Article  CAS  Google Scholar 

  21. Cornell R, Schwertmann U (2003) Iron Oxides. Wiley-VCH Verlag, Weinheim

    Book  Google Scholar 

  22. Fitzpatrick RW, Naidu R, Self PG (1992) In: Skinner HCW, Fitzpatrick RW (eds) Biomineralization processes of iron and manganese—modern and ancient environments. Catena Supplement 21, Catena Verlag, Reiskirchen, pp 263–286

  23. Ankrah DA, Sogaard EG (2009) 13th international water technology conference. IWTC 13, Hurghada, pp 999–1005

  24. Mandai K, Korenaga T, Ema T, Sakai T, Furutani M, Hashimoto H, Takada J (2012) Tetrahedron Lett 53:329–332

    Article  CAS  Google Scholar 

  25. Angelova R, Blagoev B, Slavov L, Iliev M, Groudeva V, Nedkov I (2014) Biogenic oxides from neutrophilic iron bacteria and possibilities for application in the nanotechnology. J Phys 559:012019. doi:10.1088/1742-6596/559/1/012019

    Google Scholar 

  26. Angelova R, Slavov L, Iliev M, Blagoev B, Kovacheva D, Abrashev M, Nedkov I, Groudeva V (2013) Curr Opin Biotechnol 24(Supplement 1):S108–S109

    Article  Google Scholar 

  27. Cherkezova-Zheleva Z, Shopska M, Paneva D, Kovacheva D, Kadinov G, Mitov I, Comparative Study of Biogenic and Abiotic Iron-containing Materials, Hyperfine Interaction, accepted

  28. Chan CS, Fakra SC, Edwards DS, Emerson D, Banfield JF (2009) Geochim Cosmochim Acta 73:3807–3818

    Article  CAS  Google Scholar 

  29. Ferris FG, Hallberg RO, Lyven B, Pedersen K (2000) Appl Geochem 15:1035–1042

    Article  CAS  Google Scholar 

  30. Benzerara K, Yooh TH, Tyliszczak T, Constantz B, Spormann AM, Brown GE Jr (2004) Geobiology 2:249–259

    Article  Google Scholar 

  31. Emerson D, Lin H, Agulto L, Lin L (2008) Bioscience 58:925–936

    Article  Google Scholar 

  32. Shopska M, Cherkezova-Zheleva Z, Paneva D, Iliev M, Kadinov G, Mitov I, Groudeva V (2013) Cent Eur J Chem 11:215–227

    CAS  Google Scholar 

  33. Jung H, Park H, Kim J, Lee J-H, Hur H-G, Myung NV, Choi H (2007) Environ Sci Technol 41:4741–4747

    Article  CAS  Google Scholar 

  34. Hargreaves JSJ, Alharthi AI (2016) J Chem Technol Biotechnol 91:296–303. doi:10.1002/jctb.4847

    Google Scholar 

  35. Shopska MG, Kadinov GB, Briancin J, Yordanova ID, Kolev HG, Fabian M (2015) Bulg Chem Commun 47(Special Issue-C):79–86

    Google Scholar 

  36. Shopska M, Todorova S, Yordanova I, Mondal S, Kadinov G (2015) Bulg Chem Commun 47(Special Issue-C):73–78

    Google Scholar 

  37. Lee SY, Baik MH, Cho H-R, Jung EC, Jeong JT, Choi JW, Lee YB, Lee YJ (2013) J Radioanal Nucl Chem 296:1311–1319

    Article  CAS  Google Scholar 

  38. Ema T, Miyazaki Y, Taniguchi T, Takada J (2013) Green Chem 15:2485–2492. doi:10.1039/C3GC41055B

    Article  CAS  Google Scholar 

  39. Wang Z, Xiao D, Liu R, Guo Y, Lou X, Liu J (2014) J Adv Oxid Technol 17:104–108

    CAS  Google Scholar 

  40. Maithreepala RA, Doong R-A (2008) Chemosphere 70:1405–1413

    Article  CAS  Google Scholar 

  41. Ehrlich HL, Newman DK (2009) Geomicrobiology. CRC Press—Taylor & Francis Group, LLC, New York

    Google Scholar 

  42. Kappler A, Straub KL (2005) Geomicrobiological cycling of iron (Chapter 5). In: Banfield JF, Cervini-Silva J, Nealson KH (eds) Molecular geomicrobiology, reviews in mineralogy and geochemistry, vol. 59 (Series editor J.J. Rosso), Mineralogical Society of America (Geochemical Society)

  43. Ellis D (2003) Microbiology of the iron-depositing bacteria. Wexford College Press, Palm Springs

    Google Scholar 

  44. Leathen WW, Kinsel NA, Braley SA (1956) J Bacteriol 72:700

    CAS  Google Scholar 

  45. Lieske R (1919) Centr F Bakt Abt 49:413

    CAS  Google Scholar 

  46. Angelova R, Iliev M, Mitova M, Voynova V, Tasheva L, Slavov L, Groudeva V, Antonova-Nikolova S (2014) J BioSci Biotech SE/ONLINE, pp 67–70

  47. Angelova R, Slavov L, Iliev M, Mitova M, Blagoev B, Nedkov I, Groudeva V (2015) Annuaire de l’Université de Sofia “St. Kliment Ohridski” Faculte de Biologie 100:231–238

  48. Shopska M, Cherkezova-Zheleva Z, Paneva D, Iliev M, Kadinov G, Mitov I, Groudeva V (2013) Nanoscience and nanotechnology, Balabanova E, Mileva E (eds) 13: 31, Sofia

  49. Shopska M, Cherkezova-Zheleva Z, Paneva D, Petkova V, Kadinov G, Mitov I (2014) Croat Chem Acta 87:161–170

    Article  Google Scholar 

  50. Angelova R, Groudeva V, Iliev M, Slavov L, Nedkov I, Sziklai-László I, Krezhov K (2015) J Biol Phys 41:367–375

    Article  CAS  Google Scholar 

  51. Shopska M, Paneva D, Kadinov G, Cherkezova-Zheleva Z, Mitov I, Iliev M, Study on the composition of biogenic iron-containing materials obtained under cultivation of the Leptothrix sp. on different media, Composites Part A, submitted

  52. Krezhov K, Angelova R, Sziklai-Laszlo I (2015) In: Proceedings 8th Congress of the Balkan Geophysical Society, EAGE, Chania, Crete

  53. Balek V, Subrt J (1995) Pure Appl Chem 67:1839–1842

    Article  CAS  Google Scholar 

  54. Rubio C, Ott C, Amiel C, Dupont-Moral I, Travert J, Mariey L (2006) J Microbiol Methods 64:287

    Article  CAS  Google Scholar 

  55. Little LH (1966) Infrared spectra of adsorbed species. Academic Press Inc., New York

    Google Scholar 

  56. Gehring AU, Hofmeister AM (1994) Clays Clay Miner 42:409–415

    Article  CAS  Google Scholar 

  57. Cornell RM, Schwertmann U (2003) The iron oxides. Structure, properties, reactions, occurrences and uses. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim

    Google Scholar 

  58. Lazaroff N, Sigal W, Wasserman A (1982) Appl Environ Microbiol 43:924–938

    CAS  Google Scholar 

  59. Music S, Saric A, Popovic S, Nomura K, Sawada T (2000) Croat Chem Acta 73:541–567

    CAS  Google Scholar 

  60. Weckler B, Lutz HD (1998) Eur J Solid State Inorg Chem 35:531–544

    Article  CAS  Google Scholar 

  61. Venkataraman M (2005) The effect of colloidal stability on the heat transfer characteristics of nanosilica dispersed fluids. M.S. degree thesis, University of Central Florida, Orlando

  62. Bernal JD, Dasgupta DR, Mackey AL (1959) Clay Miner Bull 4:15–30

    Article  CAS  Google Scholar 

  63. Lepp H (1957) Am Mineral 42:679–681

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Bulgarian Science Fund for financial support by projects T02-17/2014 and DID 02/38/2009. This work was also supported by the Bulgarian Academy of Sciences and the Slovak Academy of Sciences through the bilateral project ‘Mechanochemical synthesis: an ecologically friendly process in the production of materials for photocatalytic air and water purification’. M.F. thanks APVV 14-0103 for support of his work. The authors acknowledge assistance of Prof. Ch. Bonev with English language revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shopska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shopska, M., Paneva, D., Kadinov, G. et al. Composition and catalytic behavior in CO oxidation of biogenic iron-containing materials. Reac Kinet Mech Cat 118, 179–198 (2016). https://doi.org/10.1007/s11144-016-0989-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-0989-6

Keywords

Navigation