Skip to main content
Log in

Hydrogenolysis of glycerol to alcohols catalyzed by transition metals supported on pillared clay

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present work evaluated the effect of Pt, Pd and Ru catalysts supported on pillared clay (Al-Pilc) on the selectivity and products yielded in the hydrogenolysis of glycerol. The catalyst was prepared by aqueous suspension impregnation, with precursors Pt(NH3)4Cl2·0.68H2O, PdCl2 and RuCl3·1.37H2O, to obtain a nominal content catalyst of 2 wt%. They were characterized by specific surface area, temperature programmed reduction, X-ray diffraction, infrared spectroscopy of adsorbed pyridine, and pyridine temperature programmed desorption. As co-catalyst, the solid studied was Amberlyst 15. The hydrogenolysis of glycerol was performed in the liquid phase, typically at 393 K and 50 bar. The results indicate that the use of bifunctional metal–acid catalysts is a way to make the hydrogenolysis more effective because it favors the dehydration and hydrogenation reactions to produce 1,2-propanediol (1,2PD) and 1-propanol (1PO). Higher yield and a suitable selectivity to 1,2-propanediol were obtained for Ru/Al-Pilc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ott L, Bicker M, Vogel H (2006) Green Chem 8(2006):214–220

    Article  CAS  Google Scholar 

  2. Batista F (2009) Brazil has no right destination for glycerin generated from biodiesel. http://www.biodieselbr.com/noticias/biodiesel/brasil-destino-certo-glicerina-gerada-biodiesel-05-06-07.htm. Acessed Mar 2009

  3. Medeiros MA, Araujo MH, Augusti R, Oliveira LCA, Lago RM (2009) J Braz Chem Soc 20(9):1667–1673

    Article  CAS  Google Scholar 

  4. Wang K, Hawley M, Furney TD (1995) Ind Eng Chem.Res 34:3766–3774

    Article  CAS  Google Scholar 

  5. Nakagawa Y, Tomishige K (2011) Catalyst Development for the Hydrogenolysis of Biomass-Derived Chemicals to Value-Added Ones. Catal SurvAsia 15(2):111–116

    Article  CAS  Google Scholar 

  6. Chiu CW, Dasari MA, Suppes GJ, Sutterlin WR (2006) AIChE J 52:3543–3548

    Article  CAS  Google Scholar 

  7. Milone C, Neri G, Donato A, Musolino MG, Mercadante L (1996) Selective hydrogenation of benzene to cyclohexene on Ru/γ-Al2O3. J Catal 159:253

    Article  CAS  Google Scholar 

  8. Binitha NN, Sugunam S (2006) Microporous Mesoporous Mater 93:82–98

    Article  CAS  Google Scholar 

  9. Figueiredo FCA, Jordão E, Landers R, Carvalho WA (2009) Appl Catal A 371:131–141

    Article  CAS  Google Scholar 

  10. Figueiredo, FCA The hydrogenation of dimethyl adipate using catalysts supported on pillared clays. Campinas, SP, February 2009, Doctoral Thesis, 211 p

  11. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  12. Gil A, Vicente MA, Lambert J-F, Gandía LM (2001) Catal Today 68:41–51

    Article  CAS  Google Scholar 

  13. Jinxiang L, Lixin Y, Shiuying G, Lijuan H, Renyuan T, Dongbai D (1988) Thermochim Acta 123:121–131

    Article  Google Scholar 

  14. Wang JA, Cuan A, Salmones J, Nava N, Castillo S, Morán-Pineda M, Rojas F (2004) Appl Surf Sci 230(2004):94–104

    Article  CAS  Google Scholar 

  15. Subramanian S (1992) Platin Met Rev 36:98–109

    CAS  Google Scholar 

  16. Reyes P, Konig ME, Pecchi G, Concha I, Granados ML, Fierro JLG (1997) Catal Lett 46:71–80

    Article  CAS  Google Scholar 

  17. Lin W, Linzhu L, Xie YX, Scheurell YC, Kemnitz KE (2005) J Mol Catal A 226:263–271

    Article  CAS  Google Scholar 

  18. Fontana J, Vignado C, Jordão E, Carvalho WA (2010) Chem Eng J 165:336–346

    Article  CAS  Google Scholar 

  19. Tichit D, Fajula F, Figueras F, Bousquet J, Gueguen C (1985) Stud Surf Sci Catal 20:351–360

    Article  CAS  Google Scholar 

  20. Lambert JF, Poncelet G (1997) Top Catal 4:43–56

    Article  Google Scholar 

  21. Wang J, Shen S, Li B, Lin H, Yuan Y (2009) Chem Lett 38(2009):572–573

    Article  CAS  Google Scholar 

  22. Maris EP, Davis RJ (2007) J Catal 249:328–337

    Article  CAS  Google Scholar 

  23. Balaraju M, Rekha V, Prasad PSS, Prasad RBN, Lingaiah N (2008) Catal Lett 126:119–124

    Article  CAS  Google Scholar 

  24. Perosa A, Tundo P (2005) Ind Eng Chem Res 44(2005):8535–8537

    Article  CAS  Google Scholar 

  25. Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel C, Rosier C (2004) Green Chem 6:359–361

    Article  CAS  Google Scholar 

  26. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Appl Catal A 318:244–251

    Article  CAS  Google Scholar 

  27. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164–7183

    Article  CAS  Google Scholar 

  28. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) J Catal 240:213–221

    Article  CAS  Google Scholar 

  29. Bradley SM, Kydd RA (1993) A Comparison of the catalytic activies of Ga13-, Al13-, GaAl12-, and chromium-pillar interlayered clay minerals and Ga-H-ZSM-5 Zeolite in the dehydrocyclodimerization of propane. J Catal 142:48–453

    Article  Google Scholar 

  30. Rohm and Haas (2006) Technical Data Sheet http://www.dow.com/assets/attachments/business/process_chemicals/amberlyst/amberlyst_15wet/tds/amberlyst_15wet.pdf

  31. Harmer MA, Sun Q (2001) Appl Catal A 221:45–62

    Article  CAS  Google Scholar 

  32. Janik MJ, Macht J, Iglesia E, Neurock M (2009) J Phys Chem C 113:1872–1885

    Article  CAS  Google Scholar 

  33. Kusunoki Y, Miyazawa T, Kunimori K, Tomishige K (2005) Catal Commun 6:645–649

    Article  CAS  Google Scholar 

  34. Suppes GJ, Sutterlin WR, Dasari MA (2005) US Patent Application 0,244,312

  35. Gong L, Lu Y, Ding Y, Lin R, Li J, Dong W, Wang T, Chen W (2010) Appl Catal A 390:119–126

    Article  CAS  Google Scholar 

  36. Dasari MA, Kiatsimkul P-P, Sutterlin WR, Suppes GJ (2005) Appl Catal A 281:225–231

    Article  CAS  Google Scholar 

  37. Roy D, Subramaniam B, Chaudhari RV (2010) Catal Today 156:31–37

    Article  CAS  Google Scholar 

  38. Huang L, Zhu Y, Zheng H, Ding G, Li Y (2009) Catal Lett 131:312–320

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPESP (2009/07109-2 and 2009/07125-8), CAPES and CNPq (301578/2008-7, 551070/2010-2 and 473481/2010-3) for their financial support, and UNICAMP and UFABC for their support on the development of the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanin, C.I.C.B., Jordão, E., Mandelli, D. et al. Hydrogenolysis of glycerol to alcohols catalyzed by transition metals supported on pillared clay. Reac Kinet Mech Cat 115, 293–310 (2015). https://doi.org/10.1007/s11144-014-0831-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0831-y

Keywords

Navigation