Skip to main content

Advertisement

Log in

Direct Conversion of Glycerol into 1,3-Propanediol over Cu-H4SiW12O40/SiO2 in Vapor Phase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Using a SiO2 supported copper and H4SiW12O40 catalyst, it is demonstrated that glycerol can be directly converted to 1,3-Propanediol (1,3-PD) through vapor-phase process under pressure below 0.54 MPa, without employing environmentally harmful organic solvent. The formation of 1,3-PD is proved to proceed through the designed reaction pathway: (step 1) dehydration of glycerol to 3-hydroxypropanal on acid site of supported H4SiW12O40 (step 2) hydrogenation of 3-hydroxypropanal on supported copper metal. The effect of temperature, weight hourly space velocity, pressure, and initial water content was investigated to obtain the optimum conditions. The glycerol conversion and products distribution greatly depended on these factors. Both the 1,3-PD and 1,2-Propanediol selectivity improved with increasing hydrogen pressure. At 210 °C, 0.54 MPa and 83.4% conversion, the selectivity of 1,3-PD was up to 32.1%, together with a 22.2% selectivity of 1,2-Propanediol. The cyclic acetal, an important kind of byproducts, was identified by Gas Chromatogram–Mass Spectrometer (GC–MS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2

Similar content being viewed by others

References

  1. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) Angew Chem Int Ed 46:4434

    Article  CAS  Google Scholar 

  2. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13

    Article  CAS  Google Scholar 

  3. Zhou CH, Beltramini JN, Fan YX, Lu GQ (2008) Chem Soc Rev 37:527

    Article  Google Scholar 

  4. Gottschalk G, Averhoff B (1992) US Patent 5,164,309, Unilever Patent Holdings

  5. Himmi EH, Bories A, Barbirato F (1999) Bioresour Technol 67:123

    Article  CAS  Google Scholar 

  6. Nagarajan V, Nakamura CE (1998) US Patent 5,821,092, Du Pont

  7. Che TM (1987) US Patent 4,642,394, Celanese Corp

  8. Drent E, Jager WW (2000) US Patent 6,080,898, to Shell Oil Co

  9. Schlaf M, Ghosh P, Fagan PJ, Hauptman E, Bullock RM (2001) Angew Chem Int Ed 40:3887

    Article  CAS  Google Scholar 

  10. Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel C, Rosier C (2004) Green Chem 6:359

    Article  CAS  Google Scholar 

  11. Kurosaka T, Maruyama H, Naribayashi I, Sasaki Y (2008) Catal Commun 9:1360

    Article  CAS  Google Scholar 

  12. Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Appl Catal A 281:225

    Article  CAS  Google Scholar 

  13. Chiu CW, Dasari MA, Suppes GJ, Sutterlin WR (2006) AIChE J 52:3543

    Article  CAS  Google Scholar 

  14. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) J Catal 240:213

    Article  CAS  Google Scholar 

  15. Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2008) Catal Lett 120:307

    Article  CAS  Google Scholar 

  16. Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Catal Commun 8:1349

    Article  CAS  Google Scholar 

  17. Nimlos MR, Blanksby SJ, Qian XH, Himmel ME, Johnson DK (2006) J Phys Chem A 110:6145

    Article  CAS  Google Scholar 

  18. Chai SH, Wang HP, Liang Y, Xu BQ (2007) Green Chem 9:1130

    Article  CAS  Google Scholar 

  19. Schlaf M (2006) Dalton Trans 394:645

    Google Scholar 

  20. Dubois JL, Duquenne C, Hölderlich W (2008) WO Patent 2006/087083 Arkema France

  21. Marchi AJ, Gordo DA, Trasarti AF, Apesteguía CR (2003) Appl Catal A 249:53

    Article  CAS  Google Scholar 

  22. Saadi A, Rassoul Z, Bettahar MM (2000) J Mol Catal A164:205

    Article  Google Scholar 

  23. Zhu YL, Li YW, Huang L (2008) CN Patent 200810186614.8 Synfuels China Co. Ltd

  24. Huang L, Zhu YL, Zheng HY, Li YW, Zeng ZY (2008) J Chem Technol Biotechnol 83:1670

    Article  CAS  Google Scholar 

  25. Chiu CW, Tekeei A, Sutterlin WR, Ronco JW, Suppes GJ (2008) AIChE J 54:2456

    Article  CAS  Google Scholar 

  26. Sato S, Akiyama M, Takahashi R, Hara T, Inui K, Yokota M (2008) Appl Catal A 347:186

    Article  CAS  Google Scholar 

  27. Chai SH, Wang HP, Liang Y, Xu BQ (2007) 11th National youth congress on catalysis. QingDao, China, p 432

    Google Scholar 

  28. Deutsch J, Martin A, Lieske H (2007) J Catal 245:428

    Article  CAS  Google Scholar 

  29. Ajaikumar S, Pandurangan A (2008) J Mol Catal A 290:35

    Article  CAS  Google Scholar 

  30. Cortright RD, Sanchez-Castillo M, Dumesic JA (2002) Appl Catal B 39:353

    Article  CAS  Google Scholar 

  31. Huang L, Zhu YL, Zheng HY, Du MX, Li YW (2008) Appl Catal A 349:204

    Article  CAS  Google Scholar 

  32. Yaws CL, Li B, Nijhawa S, Hopper J, Pike P (1999) In: Yaws CL (ed) Chemical properties handbook. McGraw-Hill, New York, p 314

    Google Scholar 

  33. Dalavoy TS, Jackson JE, Swain GM, Miller DJ, Li L, Lipkowski J (2007) J Catal 246:15

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Chunfan Huo for her help. This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (NO. 2007YQNRC19). This work was also supported by Synfuels China. Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulei Zhu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Zhu, Y., Zheng, H. et al. Direct Conversion of Glycerol into 1,3-Propanediol over Cu-H4SiW12O40/SiO2 in Vapor Phase. Catal Lett 131, 312–320 (2009). https://doi.org/10.1007/s10562-009-9914-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9914-1

Keywords

Navigation