Skip to main content
Log in

Detailed kinetics of Fischer–Tropsch synthesis on a precipitated iron catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A Langmuir–Hinshelwood–Hougen–Watson kinetic model for FTS hydrocarbon production rates is developed. The concept of dual Anderson–Schulz–Flory (ASF) distribution with two chain growth probabilities is used for developing the kinetic model. The experiments were carried out in a continuous spinning basket reactor. The iron catalyst promoted by lanthanum as a low basic promoter is used for activity evaluations. The results show that the kinetic model developed by dual ASF product distributions is more consistent with experimental results than simple ASF. The activation energy for the formation of methane, ethane and ethylene are calculated as 68, 76 and 72 kJ mol−1, which can explain the lower selectivity of ethane than ethylene. The activation energy for paraffin formation with lower carbon number is 91 kJ mol−1 and for paraffin formation with larger carbon number is 102 kJ mol−1, which can explain the lower selectivity of heavy paraffins. Also, the activation energy of light olefin formation is 98 kJ mol−1 and the activation energy of heavy olefin formation, is 148 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson RB (1984). Academic Press, Orlando

  2. Davis B (2005) Top Catal 32:143–168

    Article  CAS  Google Scholar 

  3. Dry ME (2002) Catal Today 71:227–241

    Article  CAS  Google Scholar 

  4. Dry ME (2004) Appl Catal A 276:1–3

    Article  CAS  Google Scholar 

  5. Abelló S, Montané D (2011) ChemSusChem 4:1538–1556

    Article  Google Scholar 

  6. Todic B, Bhatelia T, Froment GF, Ma W, Jacobs G, Davis BH, Bukur DB (2013) Ind Eng Chem Res 52:669–679

    Google Scholar 

  7. Bartholomew CH (1991) In: Guczi L (ed) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 158–224

  8. Kwack S-H, Park M-J, Bae J, Ha K-S, Jun K-W (2011) Reac Kinet Mech Cat 104:483–502

    Article  CAS  Google Scholar 

  9. Fernandes FAN (2005) Chem Eng Technol 28:930–938

    Article  CAS  Google Scholar 

  10. Teng B-T, Chang J, Zhang C-H, Cao D-B, Yang J, Liu Y, Guo X-H, Xiang H-W, Li Y-W (2006) Appl Catal A 301:39–50

    Article  CAS  Google Scholar 

  11. Yang J, Liu Y, Chang J, Wang Y-N, Bai L, Xu Y–Y, Xiang H-W, Li Y-W, Zhong B (2003) Ind Eng Chem Res 42:5066–5090

    Article  CAS  Google Scholar 

  12. Nowicki L, Ledakowicz S, Bukur DB (2001) Chem Eng Sci 56:1175–1180

    Article  CAS  Google Scholar 

  13. Laurent Sehabiague BIM (2013) Int J Chem Reactor Eng 11:22

    Google Scholar 

  14. Lox ES, Froment GF (1993) Ind Eng Chem Res 32:11

    Article  Google Scholar 

  15. Visconti C, Tronconi E, Lietti L, Forzatti P, Rossini S, Zennaro R (2011) Top Catal 54:786–800

    Article  CAS  Google Scholar 

  16. Wang Y-N, Ma W-P, Lu Y-J, Yang J, Xu Y–Y, Xiang H-W, Li Y-W, Zhao Y-L, Zhang B-J (2003) Fuel 82:195–213

    Article  CAS  Google Scholar 

  17. Van Der Laan GP, Beenackers AACM (1999) Catal Rev 41:255–318

    Article  Google Scholar 

  18. Zhang R, Chang J, Xu Y, Cao L, Li Y, Zhou J (2009) Energy Fuels 23:4740–4747

    Article  CAS  Google Scholar 

  19. Huff GA, Satterfield CN (1984) Ind Eng Chem Process Des Dev 23:696–705

    Article  CAS  Google Scholar 

  20. Nakhaei Pour A, Shahri SMK, Bozorgzadeh HR, Zamani Y, Tavasoli A, Marvast MA (2008) Appl Catal A 348:201–208

    Article  CAS  Google Scholar 

  21. Gaube J, Klein HF (2008) J Mol Catal A 283:60–68

    Article  CAS  Google Scholar 

  22. Gaube J, Klein HF (2010) Appl Catal A 374:120–125

    Article  CAS  Google Scholar 

  23. Huff GA Jr, Satterfield CN (1984) J Catal 85:370–379

    Article  CAS  Google Scholar 

  24. Pour AN, Zamani Y, Tavasoli A, Kamali Shahri SM, Taheri SA (2008) Fuel 87:2004–2012

    Article  CAS  Google Scholar 

  25. Pour AN, Zare M, Zamani Y (2010) J Nat Gas Chem 19:31–34

    Article  CAS  Google Scholar 

  26. Nakhaei Pour A, Housaindokht MR, Tayyari SF, Zarkesh J, Alaei MR (2010) J Nat Gas Sci Eng 2:61–68

    Article  Google Scholar 

  27. Nakhaei Pour A, Housaindokht MR, Tayyari SF, Zarkesh J, Shahri SMK (2011) Chem Eng Res Des 89:262–269

    Article  Google Scholar 

  28. Nakhaei Pour A, Housaindokht MR, Zarkesh J, Tayyari SF (2010) J Nat Gas Sci Eng 2:79–85

    Article  Google Scholar 

  29. Pour AN, Housaindokht MR, Zarkesh J, Irani M, Babakhani EG (2012) J Ind Eng Chem 18:597–603

    Article  CAS  Google Scholar 

  30. Ali NP, Riyahi F, Housaindokht MR, Irani M, Shahri SMK, Hatami B (2013) J Energy Chem 22:119–129

    Article  Google Scholar 

  31. Donnelly TJ, Yates IC, Satterfield CN (1988) Energy Fuels 2:734–739

    Article  CAS  Google Scholar 

  32. An X, Wu B-s, Wan H-J, Li T-Z, Tao Z-C, Xiang H-W, Li Y-W (2007) Catal Commun 8:1957–1962

    Article  CAS  Google Scholar 

  33. Davis BH (2009) Catal Today 141:25–33

    Article  CAS  Google Scholar 

  34. Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) J Catal 243:199–211

    Article  CAS  Google Scholar 

  35. Yang J, Sun Y, Tang Y, Liu Y, Wang H, Tian L, Wang H, Zhang Z, Xiang H, Li Y (2006) J Mol Catal A 245:26–36

    Article  CAS  Google Scholar 

  36. van der Laan GP, Beenackers AACM (2000) Appl Catal A 193:39–53

    Article  Google Scholar 

  37. Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) Appl Catal A 308:19–30

    Article  CAS  Google Scholar 

  38. Dictor RA, Bell AT (1986) J Catal 97:121–136

    Article  CAS  Google Scholar 

  39. Lox ES, Froment GF (1993) Ind Eng Chem Res 32:61–70

    Article  CAS  Google Scholar 

  40. Patzlaff J, Liu Y, Graffmann C, Gaube J (1999) Appl Catal A 186:109–119

    Article  CAS  Google Scholar 

  41. Vannice MA (1976) Catal Rev 14:153–191

    Article  CAS  Google Scholar 

  42. Dry ME, Shingles T, Boshoff LJ, Oosthuizen GJ (1969) J Catal 15:190–199

    Article  CAS  Google Scholar 

  43. Dry ME, du Plessis JAK, Leuteritz GM (1966) J Catal 6:194–199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nakhaei Pour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakhaei Pour, A., Khodabandeh, H., Izadyar, M. et al. Detailed kinetics of Fischer–Tropsch synthesis on a precipitated iron catalyst. Reac Kinet Mech Cat 111, 29–44 (2014). https://doi.org/10.1007/s11144-013-0640-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0640-8

Keywords

Navigation