Skip to main content
Log in

Kinetic study of competitive catalytic transfer hydrogenation on a multi-functional molecule: 4-benzyloxy-4′-chlorochalcone

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A combined chemical and mathematical approach was used to study the reduction process of 4-benzyloxy-4′-chlorochalcone involving catalytic transfer hydrogenation with ammonium formate and palladium on carbon. Several solvents were investigated to evaluate the effect of solvent-type on competitive reduction rates. A mathematical model based on Michaelis–Menten reaction kinetics was developed using a least squares approximation method to estimate several model parameters according to time-dependent reduction data. The conjugated alkene was found to reduce fastest in all solvents except alcohols, which is likely related to the solvent’s ability to support partially-charged intermediate species in the RDS of aryl chloride hydrogenolysis. Substrate concentration and pH dependence of the reduction were also investigated to confirm prior mechanistic findings. Hydrogen transfer from the formate to palladium appears to be rate determining in multiple reactions. Also, catalyst poisoning by HCl may affect aryl chloride reduction more significantly than reduction of other functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rajagopal S, Spatola AF (1995) J Org Chem 60:1347–1355

    Article  CAS  Google Scholar 

  2. Anwer MK, Sherman DB, Rooney JG, Spatola AF (1989) J Org Chem 54:1284

    Article  CAS  Google Scholar 

  3. Bar R, Sasson Y (1981) Tetrahedron Lett 22:1709

    Article  CAS  Google Scholar 

  4. Wiener H, Blum J, Sasson Y (1991) J Org Chem 56:6145–6148

    Article  CAS  Google Scholar 

  5. Groschuff E, Ber D (1903) Chem Ges 36(1783):4351

    Article  Google Scholar 

  6. Brieger G, Nestrick TJ (1974) Chem Rev 74:567–580

    Article  CAS  Google Scholar 

  7. Haertner H, Knotakte D (1980) J Mol Catal 1:3–10

    Google Scholar 

  8. Johnstone RAW, Wilby AH, Entwistle ID (1985) Chem Rev 85:129–170

    Article  CAS  Google Scholar 

  9. Ram S, Ehrenkaufer RE (1988) Synthesis 91:5

    Google Scholar 

  10. Zini CA, vonHolleben MLA (1992) Quimica Nova 15:40–54

    CAS  Google Scholar 

  11. Rajagopal S, Anwer MK, Spatola AF (1994) Peptides : design, synthesis, and biological activity. Birkhäuser, Boston

    Google Scholar 

  12. Zheng C, Zhang J, Wang R (2004) Gongye Cuihua 12:29–35

    CAS  Google Scholar 

  13. Mehta NH, Manyar HG, Pawar NN, Gham NO (2004) Chem Indust Digest 17:55–60

    CAS  Google Scholar 

  14. Su C, Zheng C, Wang R, Zhang J (2004) Huaxue Tongbao 67:731–739

    Google Scholar 

  15. Fajt V, Kurc L, Cerveny L (2008) Int J Chem Kinet 40:240–252

    Article  CAS  Google Scholar 

  16. Rajadhyaksha RA, Karwa SL (1986) Chem Eng Sci 41:1765–1770

    Article  CAS  Google Scholar 

  17. Lo HS, Paulaitis ME (1981) Am Inst Chem Eng J 27:842–844

    Article  CAS  Google Scholar 

  18. Fredenslund A, Jones RL, Prausnitz JM (1975) Am Inst Chem Eng J 21:1086–1099

    Article  CAS  Google Scholar 

  19. Rautanen PA, Aittamaa JR, Krause AOI (2000) Ind Eng Chem Res 39:4032–4039

    Article  CAS  Google Scholar 

  20. Cerveny L, Ruzicka V (1981) In Advances in Catalysis, 1st edn. Academic Press, New York

    Google Scholar 

  21. Cerveny L, Ruzicka V (1982) In catalysis reviews—science and engineering, 1st edn. Marcel Dekker, New York

    Google Scholar 

  22. Black JW, Leff P (1983) Proc R Soc London B202:141–162

    Article  Google Scholar 

  23. Doktorov AB, Kipriyanov AA (2007). J Phys Condens Matter. doi:10.1088/0953-8984/19/16/065136

  24. Oklno MS, Mavrovouniotis ML (1998) J Am Chem Soc 98:391–408

    Google Scholar 

  25. Glasser L (1979) J Chem Ed 56:22–23

    Article  CAS  Google Scholar 

  26. Drougard Y, Decroocq D (1969) Bull Soc Chem Fr 9:2972–2983

    CAS  Google Scholar 

  27. Bernas A, Myllyoya J, Salmo T, Murzin DY (2008) J App Cat 353:166–180

    Article  Google Scholar 

  28. Kohler Agnes Gamez Jochem, Bradley John (1998) Catal Lett 55:73–77

    Article  Google Scholar 

  29. Blackmond Donna G (2005) Angew Chem Int Ed 44:4302

    Article  CAS  Google Scholar 

  30. Mohrig JR, Hammond CN, Schatz PF, Davidson TA (2009) J Chem Ed 86:234–239

    Article  CAS  Google Scholar 

  31. Goldberg R, Glen J (1994) Ind Eng Chem 33B:163–165

    Google Scholar 

  32. Keinam E, Greenspoon N (1986) J Am Chem Soc 108:7314

    Article  Google Scholar 

  33. Nielsen SF, Kharazmi A, Christensen SB (1998) Bioorg Med Chem Lett 6:937

    CAS  Google Scholar 

  34. Sajiki H, Ikawa T, Yamada H, Tsubouchi K, Hirota K (2003) Tetrahedron Lett 44:171

    Article  CAS  Google Scholar 

  35. Basu B, Bhuiyan MH, Das P, Hossain I (2003) Tetrahedron Lett 44:8931

    Article  CAS  Google Scholar 

  36. Tian F, Lu S (2004) Syn Lett 39:1953–1956

    Google Scholar 

  37. Andrade CKZ, Silva WA (2006) Lett Org Chem 3:39–41

    Article  CAS  Google Scholar 

  38. Kocienski PJ (2005) Protecting groups. Thieme, Munster

    Google Scholar 

  39. Rashad AA, El-Sabbagh OI, Baraka MM, Ibrahim SM, Pannecouque C, Andrei G, Snoeck R, Balzarini J, Mostafa A (2010) Med Chem Res 19:1025–1035

    Article  CAS  Google Scholar 

  40. Robinson TP et al (2005) Mioorg Med Chem Lett 13:4007–4013

    CAS  Google Scholar 

  41. Rader CP, Smith HA (1961) J Am Chem Soc 84:1443–1449

    Article  Google Scholar 

  42. MathWorks (2013) Matlab. vol R2013, Student Version edn

  43. Ram S, Spicer LD (1992) Synth Commun 22:2683–2690

    Article  CAS  Google Scholar 

  44. Suzuki S, Suzuki T (1965) Japanese J Sci Tech 38:2020

    CAS  Google Scholar 

  45. Kleiderer EC, Kornfield EC (1948) J Org Chem 13:455–458

    Article  CAS  Google Scholar 

  46. Andrews MJ, Pillai CN (1978) Ind J Chem 16:465

    Google Scholar 

  47. Snyder LR (1978) J Chromatogr Sci 16:223–234

    Article  CAS  Google Scholar 

  48. Maryott A, Smith E (1951) Dielectric constants of pure liquids. In: Linstrom PJ, Mallard WG (eds) NIST chemistry webBook, NIST standard reference database number 69. National Bureau of Standards, Washington, DC http://webbook.nist.gov

  49. Li J-P, Zhang Y-X, Ji Y (2008) Selective 1,4-reduction of chalcones with Zn/NH4Cl/C2H5OH/H2O. J Chin Chem Soc 55:390–395

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Jeremy Martin, Tumare Iqbal, leaders/participants from the 2010 CWCS Teaching Guided-Inquiry Organic Chemistry Labs Workshop and C344 students from 2011-2013 for their valuable contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Denton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Arciero, J., Piltz, J. et al. Kinetic study of competitive catalytic transfer hydrogenation on a multi-functional molecule: 4-benzyloxy-4′-chlorochalcone. Reac Kinet Mech Cat 111, 1–14 (2014). https://doi.org/10.1007/s11144-013-0627-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0627-5

Keywords

Navigation