Skip to main content
Log in

Co3O4 of regular cubic shape as high-efficiency catalyst for the preparation of lactones through the Baeyer–Villiger oxidation of cyclic ketones with dioxygen

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The Co3O4 catalysts with regular cubes in shape were prepared by direct hydrothermal synthesis with the assistance of a triblock copolymer (P123). The synthesized materials were characterized by powder X-ray diffraction, scanning electron microscopy, and nitrogen adsorption–desorption techniques. It was found that the Co3O4 catalysts showed high catalytic activity and selectivity for the Baeyer–Villiger oxidation of cyclic ketones in the presence of 1,2-dichloroethane and dioxygen. The effects of reaction conditions (catalyst amount, reaction temperature, reaction time, and different solvents) on the catalytic performance of Co3O4 were investigated. It was observed that under optimal reaction conditions, cyclohexanone conversion and ε-caprolactone selectivity could reach 98 and 100 %, respectively. In addition, the process has advantages such as mild reaction conditions, simple operation, and high product yield. Furthermore, the catalyst can be reused for several times without obvious loss of activity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baeyer A, Villiger V (1899) Ber Dtsch Chem Ges 32:3625

    Article  Google Scholar 

  2. Hentze HP, Antonietti M (2002) Rev Mol Bio 90:27

    Article  CAS  Google Scholar 

  3. Dong HK, Min K, Sukbok C (2005) Org Lett 22:5015

    Google Scholar 

  4. Zarrabi S, Mahmoodi NO, Tabatabaeian K, Zanjanchi NA (2009) Chin Chem Lett 20:1400

    Article  CAS  Google Scholar 

  5. Baj S, Chrobok A, Siewniak A (2011) Appl Catal A 395:49

    Article  CAS  Google Scholar 

  6. Alam MM, Varala R, Adapa SR (2003) Synth Commun 33:3035

    Article  CAS  Google Scholar 

  7. Choudary BM, Sridhar C, Sateesh M, Sreedhar B (2004) J Mol Catal A 212:237

    Article  CAS  Google Scholar 

  8. Yadav JS, Reddy BVS, Basak AK, Narsaiah AV (2004) Chem Lett 33:248

    Article  CAS  Google Scholar 

  9. Corma A, Nemeth LT, Renz M, Valencia S (2001) Nature 411:423

    Article  Google Scholar 

  10. Nemeth L, Moscoso J, Erdman N, Bare SR, Oroskar A, Kelly SD, Corma A, Valencia S, Renz M (2004) Stud Surf Sci Catal 154:2626

    Article  Google Scholar 

  11. Boronat M, Concepcion P, Corma A, Renz M (2007) Catal Today 121:39

    Article  CAS  Google Scholar 

  12. Corma A, Navarro MT, Nemeth L, Renz M (2001) Chem Commun 7:2190

    Article  Google Scholar 

  13. Ruiz JR, Jimenez-Sanchidrian C, Llamas R (2006) Tetrahedron 62:11697

    Article  CAS  Google Scholar 

  14. Llamas R, Jiménez-Sanchidrián C, Ruiz JR (2007) Tetrahedron 63:1435

    Article  CAS  Google Scholar 

  15. Pillai UR, Sahle-Demessie E (2003) J Mol Catal A 191:93

    Article  CAS  Google Scholar 

  16. Chen C, Peng J, Li B, Wang L (2009) Catal Lett 131:618

    Article  CAS  Google Scholar 

  17. Kaneda K, Ueno S, lmanaka T (1994) J Chem Soc Chem Commum 25:797

    Article  Google Scholar 

  18. Kaneda K, Ueno S, lmanaka T (1995) J Mol Catal A 102:135

    Article  CAS  Google Scholar 

  19. Chisem IC, Chisem J, Clark JH (1998) New J Chem 22:81

    Article  CAS  Google Scholar 

  20. Raja R, Thomas JM, Sankar G (1999) Chem Commun 525

  21. Murahashi S, Oda Y, Naota T (1992) Tetrahedron Lett 33:7557

    Article  CAS  Google Scholar 

  22. Kawabata T, Ohishi Y, Itsuki S, Fujisaki N, Shishido T, Takaki K, Zhang Q, Wang Y, Takehira K (2005) J Mol Catal A 236:99

    Article  CAS  Google Scholar 

  23. Subramanian H, Nettleton EG, Koodali RT (2008) React Kinet Catal Lett 95:239

    Article  CAS  Google Scholar 

  24. Subramanian H, Nettleton EG, Budhi S, Koodali RT (2010) J Mol Catal 330:66

    Article  CAS  Google Scholar 

  25. Chisem IC, Chisem J, Rafelt JS, Macquarrie DJ, Clark JH, Utting KA (1999) J Chem Technol Biotechnol 74:923

    Article  CAS  Google Scholar 

  26. Yan YY, Dong LM, Guo JP, Huang MY, Jiang YY (1997) J Macromol Sci 34:1097

    Article  Google Scholar 

  27. Nabae Y, Rokubuichi H, Mikuni M, Kuang Y, Hayakawa T, Kakimoto MA (2013) ACS Catal 3:230

    Article  CAS  Google Scholar 

  28. Li YF, Guo MQ, Yin SF, Chen L, Zhou YB, Qiu RH, Au CT (2013) Carbon 55:269

    Article  CAS  Google Scholar 

  29. Guo B, Li CS, Yuan ZY (2010) J Phys Chem C 114:12805

    Article  CAS  Google Scholar 

  30. Maul J, Ostrowski P, Ublacker G, Linclau B, Curran D (1999) Top Curr Chem 206:79

    Article  Google Scholar 

  31. Zhou XT, Ji HB, Yuan QL (2008) J Porphyr Phthalocyanines 12:94

    Article  CAS  Google Scholar 

  32. Chrobok A (2010) Tetrahedron 66:2940

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was financially supported by the National Natural Science Foundation of China (Grant No. U1162109), Hunan Provincial Natural Science Foundation of China (10JJ1003), the program for New Century Excellent Talents in Universities (NCET-10-0371), and the Fundamental Research Funds for the Central Universities. C.T. Au thanks the Hunan University for an adjunct professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Feng Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YF., Guo, MQ., Yin, SF. et al. Co3O4 of regular cubic shape as high-efficiency catalyst for the preparation of lactones through the Baeyer–Villiger oxidation of cyclic ketones with dioxygen. Reac Kinet Mech Cat 109, 525–535 (2013). https://doi.org/10.1007/s11144-013-0573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0573-2

Keywords

Navigation