Skip to main content

Benzotrifluoride and Derivatives: Useful Solvents for Organic Synthesis and Fluorous Synthesis

  • Chapter
  • First Online:
Modern Solvents in Organic Synthesis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 206))

Abstract

Benzotrifluoride (BTF, trifluoromethylbenzene, α,α,α-trifluorotoluene, C6H5CF3) and related compounds are introduced as new solvents for traditional organic synthesis and for fluorous synthesis. BTF is more environmentally friendly than many other organic solvents and is available in large quantities. BTF is relatively inert and is suitable for use as a solvent for a wide range of chemistry including ionic, transition-metal catalyzed and thermal reactions. It is especially useful for radical reactions, where it may replace benzene as the current solvent of choice for many common transformations. BTF and related solvents are also crucial components of fluorous synthesis since they can dissolve both standard organic molecules and highly fluorinated molecules. This chapter provides an overview of the reactivity and toxicological properties of BTF and analogs and then summarizes their recent uses as reaction solvents in both traditional organic and new fluorous synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogawa A, Curran DP (1997) J Org Chem 62:450

    Article  CAS  Google Scholar 

  2. Barbour AK, Belf LF, Buxton MW (1963) In: Stacey M, Tatlow JC, Edwards AG (eds) Advances in Fluorine Chemistry, vol 3. Butterworths, London, p 81

    Google Scholar 

  3. Brown JH, Suchling CW, Wholley WB (1949) J Chem Soc, Supp Issue S 95

    Google Scholar 

  4. Lademann R et al, US 3,966,832 (1978)

    Google Scholar 

  5. Robota S,US 3,859,372 (1975)

    Google Scholar 

  6. Baxamusa J, Robota S, US 4,183,873 (1980)

    Google Scholar 

  7. Sendlak LP,US 4,129,602 (1978)

    Google Scholar 

  8. Sendlak LP,US4,130,594(1978)

    Google Scholar 

  9. Ramanadin A, Seigneurin S, US 4,462,937 (1984)

    Google Scholar 

  10. Schlosser M, Katsoulos G, Takagishi S (1990) Synlett 747

    Google Scholar 

  11. Lefave GM (1949) J Am Chem Soc 71:4148

    Article  CAS  Google Scholar 

  12. Simon JH, McArthur RE (1947) Ind Eng Chem 39:366

    Google Scholar 

  13. Hudlicky M (1976) Chemistry of Organic Fluoride Compounds. Ellis Harwood, p 274

    Google Scholar 

  14. Henne AL, Newman MS (1938) J Am Chem Soc 60:1697

    Article  CAS  Google Scholar 

  15. Ramchandani RK, Wakharkar RD, Sudalai A (1996) Tetrahedron Lett 37:4063

    Article  CAS  Google Scholar 

  16. Nagy G, Tramontana D (1995) Am Paint Coatings J 37

    Google Scholar 

  17. Hare CH ( 1997) Paint and Coatings Industry, XII, 10:202

    Google Scholar 

  18. Hare CH (1998) Modern Paint Coatings, 1:30

    Google Scholar 

  19. Registry of Toxic Effects of Chemical Substances (RTECS) compiled by the National Institute for Occupational Safety and Health of the U S Department of Health and Human Services, 1998, http://www.tomescps.com (accessed January 1999)

  20. Hazardous Substance Data Bank (HSDB) compiled by the National Library of Medicine, 1998, http://www.tomescps.com (accessed January 1999)

  21. (1996) Sax’s Dangerous Properties of Industrial Materials, 9th edn. Van Nostrand Reinhold, New York

    Google Scholar 

  22. Knaak JB, Smith LW, Fitzpatrick RD, Olson JR, Newton PE (1998) Inhalation Toxicology 10:65

    Article  CAS  Google Scholar 

  23. SIDS Initial Assessment Report, OECD, 1996->99% to air

    Google Scholar 

  24. Manahan SE (1992) Toxicological Chemistry. Ann Arbor, MI, 138

    Google Scholar 

  25. National Research Council (1995) Prudent Practices in the Laboratory Handling and Disposal of Chemicals. National Academy Press, Washington DC

    Google Scholar 

  26. Yaws CL (1994) Handbook of Vapor Pressure, vol 2. Gulf, Houston, p 269

    Google Scholar 

  27. Perrin DD, Armarego WLF, Perrin DR ( 1980) Purification of Laboratory Chemicals, 2nd edn. Pergamon Press, New York

    Google Scholar 

  28. EC values are an empirical parameter of solvent polarity which are derived by measurement of the long-wave UV/ Visible absorption band of the negative solvachromatic Pyridinium-N-phenoxide betaine dyes in the solvent being studied. Higher values are an indication of greater solvent polarity. The above values were taken from the text by Reichardt C (1990) Solvents and Solvent Effects in Organic Chemistry, 2nd edn. VCH Publishing, Weinheim, p 365

    Google Scholar 

  29. Gómez AM, López JC, Fraser-Reid B (1993) Synlett 10:943

    Google Scholar 

  30. Kistyakowsky GB, Tichenor RL (1942) J Am Chem Soc 64:2302

    Article  Google Scholar 

  31. Tarbell DS, Kincaid JF (1940) J Am Chem Soc 62:728

    Article  CAS  Google Scholar 

  32. Diels O, Alder K (1928) Liebigs Ann Chem 460:98

    Article  CAS  Google Scholar 

  33. Curran DP, Hale GR, Geib SJ, Balog A, Cass QB, Degani ALG, Hernandes MZ, Freitas LCG (1997) Tetrahedron:Asymmetry 8:3955

    Article  CAS  Google Scholar 

  34. Giese B (1983) Angew Chem Int Ed Engl 22:753

    Article  Google Scholar 

  35. Hanessian S, Léger R, Alpegioni M (1992) Carbohyd Res 228:145

    Article  CAS  Google Scholar 

  36. Curran DP, Liu H, Josien H, Ko SB ( 1996) Tetrahedron 52:11385

    Article  CAS  Google Scholar 

  37. Giese B, Kretzschmar G (1983) Chem Ber 116:3267. See also ref. 37

    Article  CAS  Google Scholar 

  38. Kikukawa K, Umekawa H, Wada F, Matsuda T (1988) Chem Lett 881

    Google Scholar 

  39. Labadie JW, Stille JK (1983) J Am Chem Soc 105:6129

    Article  CAS  Google Scholar 

  40. Henne AL, Newman MS ( 1938) J Am Chem Soc 60:1697

    Article  CAS  Google Scholar 

  41. Ramchandani RK, Wakharkar RD, Sudalai A (1996) Tetrahedron Lett 37:4063

    Article  CAS  Google Scholar 

  42. Kulka M (1954) J Am Chem Soc 76:5469

    Article  CAS  Google Scholar 

  43. Sakurai H, Hosomi A, Hayashi J (1984) Org Synth 62:86

    CAS  Google Scholar 

  44. Fleming I, Dunogués J, Smithers R (1989) Org React 37:57

    CAS  Google Scholar 

  45. Mukaiyama T, Banno K, Narasaka K (1974) J Am Chem Soc 96:7503

    Article  CAS  Google Scholar 

  46. Poll T, Sobczak A, Hartmann H, Helmchen G (1985) Tetrahedron Lett 26:3905

    Article  Google Scholar 

  47. Drury WJ III, Ferraris D, Cox C, Young B, Lectka T (1998) J Am Chem Soc 120:11006.

    Article  CAS  Google Scholar 

  48. Ishihara K, Hanaki N, Yamamoto H (1983) J Am Chem Soc 115:10695.

    Article  Google Scholar 

  49. Höfle G, Steglich W, Vorbruggen H (1978) Angew Chem Int Ed Engl 17:569

    Article  Google Scholar 

  50. Höfle G, Steglich W (1972) Synthesis 619.

    Google Scholar 

  51. Chandhary SK, Hernandez O (1979) Tetrahedron Lett 20:99.

    Article  Google Scholar 

  52. Henkel JG, Spurlock LA (1973) J Am Chem Soc 95:8339

    Article  CAS  Google Scholar 

  53. Sigiyama K, Hirao A, Nakahama S (1996) Macromol Chem Phys 197:3149

    Article  Google Scholar 

  54. Strekowski L, Wydra RL, Harden DB, Honkan VA (1990) Heterocycles 31:1565

    Article  CAS  Google Scholar 

  55. Kitagawa O, Izawa H, Sato K, Dobashi A, Taguchi T ( 1998) J Org Chem 63:2634

    Article  CAS  Google Scholar 

  56. Mitsunobu O (1980) Synthesis 1

    Google Scholar 

  57. Azord-Hossain M (1997) Tetrahedron Lett 38:49

    Article  Google Scholar 

  58. Stang PJ, Trepkow W (1980) Synthesis 983

    Google Scholar 

  59. Okuma K, Swern D (1978) Tetrahedron 34:1651

    Article  Google Scholar 

  60. Dess DB, Martin JC (1983) J Org Chem 48:4155

    Article  CAS  Google Scholar 

  61. Ireland RE, Liu L (1993) J Org Chem 58:2899

    Article  CAS  Google Scholar 

  62. Dess DB, Martin JC (1991) J Am Chem Soc 113:7277

    Article  CAS  Google Scholar 

  63. Reich HJ, Wollowitz S (1993) Org React 44:1

    CAS  Google Scholar 

  64. Reich HJ, Renga JM, Reich IL (1975) J Am Chem Soc 97:5434

    Article  CAS  Google Scholar 

  65. Prasad M, Lu Y, Kim H-Y, Hu B, Repic O, Blacklock TJ, submitted for publication

    Google Scholar 

  66. Ek A, Witkop B (1954) J Am Chem Soc 76:5579

    Article  CAS  Google Scholar 

  67. Fabbri D, Delogu G, De Lucchi O (1993) J Org Chem 58:1748

    Article  CAS  Google Scholar 

  68. Josien H, Ko SB, Bom D, Curran DP (1998) Chem Eur J 4:67

    Article  CAS  Google Scholar 

  69. Fu GC, Nguyen ST, Grubbs RH (1993) J Am Chem Soc 115:9856

    Article  CAS  Google Scholar 

  70. Perasis NA, Bzowej EI (1990) J Am Chem Soc 112:6392

    Article  Google Scholar 

  71. Labadie SS (1989) J Org Chem 54:2496

    Article  CAS  Google Scholar 

  72. Trost BM, Van Vranken DL (1993) J Am Chem Soc 115:444

    Article  CAS  Google Scholar 

  73. Chung YK, Lee BY, Jeong N, Hudecek M, Pauson PL (1993) Organometallics 12:220

    Article  CAS  Google Scholar 

  74. Jacobsen EN, Zhang W, Muci AR, Ecker JR, Deng L (1991) J Am Chem Soc 113:7063

    Article  CAS  Google Scholar 

  75. Starks CM, Liotta C ( 1978) Phase Transfer Catalysis, Principles and Techniques. Academic Press, New York, p 110

    Google Scholar 

  76. Liotta CL, Harris HP (1974) J Am Chem Soc 96:2250

    Article  CAS  Google Scholar 

  77. Reynolds KA, O’Hagan D, Gani D, Robinson JA (1988) J Chem Soc Perkin Trans I 3195

    Article  Google Scholar 

  78. Vedejs E, Meier GP, Snoble KAJ (1981) J Am Chem Soc 103:2823

    Article  CAS  Google Scholar 

  79. Studer A, Hadida S, Ferrito R, Kim S-Y, Jeger P, Wipf P, Curran DP (1997) Science 275:823

    Article  CAS  Google Scholar 

  80. Curran DP (1996) Chemtracts-Organic Chemistry 9:75

    CAS  Google Scholar 

  81. Horvath, IT (1998) Acc Chem Res 31:641

    Article  CAS  Google Scholar 

  82. Cornils B (1997) Angew Chem Int Ed 36:2057

    Article  CAS  Google Scholar 

  83. Curran DP, Hadida S, He M (1997) J Org Chem 62:6714

    Article  CAS  Google Scholar 

  84. Kainz S, Luo ZY, Curran DP, Leitner W (1998) Synthesis 142

    Google Scholar 

  85. Curran DP (1998) Angew Chem Int Ed 37:117

    Article  Google Scholar 

  86. Curran DP, Hadida S (1996) J Am Chem Soc 118:2531

    Article  CAS  Google Scholar 

  87. Studer A, Curran DP (1997) Tetrahedron 53:6681

    Article  CAS  Google Scholar 

  88. Linclau B, Singh AK, Curran DP (1999) J Org Chem, in press

    Google Scholar 

  89. Nishikido J, Nakajima H, Saeki T, Ishii A, Mikami K (1998) Synlett 1347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maul, J.J., Ostrowski, P.J., Ublacker, G.A., Linclau, B., Curran, D.P. (1999). Benzotrifluoride and Derivatives: Useful Solvents for Organic Synthesis and Fluorous Synthesis. In: Knochel, P. (eds) Modern Solvents in Organic Synthesis. Topics in Current Chemistry, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48664-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-48664-X_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66213-6

  • Online ISBN: 978-3-540-48664-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics