Skip to main content
Log in

Study on bimodal mesoporous Co/SiO2 catalysts for the Fischer–Tropsch synthesis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of SiO2 supports were prepared with the sol–gel method. Bimodal mesoporous Co/SiO2 catalysts with different pore size distributions were prepared. The samples were characterized by means of N2 adsorption–desorption, powder X-ray diffraction, H2-chemisorption, H2 temperature programmed reduction and Raman spectroscopy. The catalysts were employed in Fischer–Tropsch synthesis under the reaction conditions of 240 °C, 2 MPa and 1,000 h−1 to investigate their catalytic performance with different pore diameters. The experimental results revealed that the bimodal catalysts contain high specific surface area contributed from the formation of smaller mesopores during sol–gel process. Small Co particles of bimodal catalyst are able to be highly dispersed and behave moderate metal-support interaction without formation of hardly reducible species, which favors the production of sufficient active centers, contributing to the high catalytic activity. Moreover, increasing the pore size of the larger pores in bimodal mesoporous catalysts will facilitate the transportation of primary products and inhibit the hydrocracking to generate light hydrocarbons, promoting the production of heavy hydrocarbons with high C5+ selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Font Freide JJHM, Gamlinb TD, Graham C, Hensman JR, Nay B, Sharp C (2003) Top Catal 26(1-4):3–12

    Article  CAS  Google Scholar 

  2. Gy Pölczmann, Valyon J, Szegedi Á, Mihályi RM, Hancsók J (2011) Top Catal 54(16–18):1079–1083

    Google Scholar 

  3. Yamashita K, Barreto L (2005) Energy 30(13):2453–2473

    Article  CAS  Google Scholar 

  4. Honsho T, Kitano T, Miyake T, Suzuki T (2012) Fuel 94:170–177

    Article  CAS  Google Scholar 

  5. Park SJ, Bae JW, Oh JH, Chary KVR, Sai Prasad PS, Jun KW, Rhee YW (2009) J Mol Catal A 298(1–2):81–87

    CAS  Google Scholar 

  6. Schultz H (1999) Appl Catal A 186(1–2):3–12

    Google Scholar 

  7. Bromfield TC, Vosloo AC (2003) Macromol Symp 193(1):29–34

    Article  CAS  Google Scholar 

  8. Park JY, Lee YJ, Karandikar PR, Jun KW, Ha KS, Park HG (2012) Appl Catal A 411–412:15–23

    Google Scholar 

  9. Wang YL, Hou B, Li DB, Chen JG, Sun YH (2012) Reac Kinet Mech Cat 106(1):217–224

    Article  Google Scholar 

  10. Oukaci R, Singleton AH, Goodwin JG (1999) Appl Catal A 186(1–2):129–144

    CAS  Google Scholar 

  11. Jacobs G, Das TK, Zhang YQ, Li JL, Racoillet G, Davis BH (2002) Appl Catal A 233(1–2):263–281

    CAS  Google Scholar 

  12. Saib AM, Claeys M, van Steen E (2002) Catal Today 71(3–4):395–402

    Article  CAS  Google Scholar 

  13. Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) J Catal 206(2):230–241

    Article  CAS  Google Scholar 

  14. Iglesia E (1997) Appl Catal A 161(1–2):59–78

    CAS  Google Scholar 

  15. Shinoda M, Zhang Y, Yoneyama Y, Hasegawa K, Tsubaki N (2004) Fuel Process Technol 86(1):73–85

    Article  CAS  Google Scholar 

  16. Ooi YS, Zakaria R, Mohamed AR, Bhatia S (2005) Energy Fuels 19(3):736–743

    Article  CAS  Google Scholar 

  17. Cooper CA, Lin YS (2007) J Mater Sci 42(1):320–327

    Article  CAS  Google Scholar 

  18. Xu BL, Fan YN, Zhang Y, Tsubaki N (2005) AIChE J 51(7):2068–2076

    Article  CAS  Google Scholar 

  19. Zhang Y, Koike M, Tsubaki N (2005) Catal Lett 91(3–4):193–198

    Article  Google Scholar 

  20. Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) J Catal 156(1):85–95

    Article  CAS  Google Scholar 

  21. Jones RD, Bartholomew CH (1988) Appl Catal 39:77–88

    Article  CAS  Google Scholar 

  22. Jones VK, Neubauer LR, Bartholomew CH (1986) J Phys Chem 90(20):4832–4839

    Article  CAS  Google Scholar 

  23. Khodakov AY, Bechara R, Griboval-Constant A (2003) Appl Catal A 254(2):273–288

    Article  CAS  Google Scholar 

  24. Jongsomjit B, Panpranot J, Goodwin JG (2001) J Catal 204(1):98–109

    Article  CAS  Google Scholar 

  25. Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) Adv Catal 39:221–302

    Article  CAS  Google Scholar 

  26. Zhang Y, Koike M, Yang RQ, Hinchiranan S, Vitidsant T, Tsubaki N (2005) Appl Catal A 292:252–258

    Article  CAS  Google Scholar 

  27. Li HL, Li JL, Ni HK, Song DC (2006) Catal Lett 110(1–2):71–76

    Article  CAS  Google Scholar 

  28. Madon RJ, Reyes SC, Iglesia E (1991) J Phys Chem 95(20):7795–7804

    Article  CAS  Google Scholar 

  29. Fan L, Yokota K, Fujimoto K (1995) Top Catal 2(1–4):267–283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (20876113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuili Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, C., Wu, Y. & Zhan, J. Study on bimodal mesoporous Co/SiO2 catalysts for the Fischer–Tropsch synthesis. Reac Kinet Mech Cat 109, 497–508 (2013). https://doi.org/10.1007/s11144-013-0570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0570-5

Keywords

Navigation