Skip to main content
Log in

Benzene hydrogenation over highly active monodisperse Ru/γ-Al2O3 nanocatalyst synthesized by (w/o) reverse microemulsion

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Ruthenium nanoparticles (10–40 nm) were synthesized by the reduction of aqueous ruthenium trichloride in aqueous sodium borohydride by the water-in-oil (w/o) reverse microemulsion method at atmospheric temperature. The synthesized Ru nanoparticles (Ru content 1–5 wt%) were dispersed on γ-alumina of high surface area by a high speed mechanical stirrer. The nanocatalysts (Ru/γ-Al2O3) were characterized by transmission electron microscopy, X-ray diffraction, N2-physisorption, BET surface area, hydrogen chemisorption and thermogravimetric analysis (TG/DTA). The activity of the nanocatalyst was tested in the gas–liquid phase hydrogenation reaction of benzene to cyclohexane at 40–100 °C and 20 bar hydrogen pressure. The activities of the catalysts were studied by varying different parameters such as Ru loading (wt% of Ru), reaction temperatures, catalyst recycling, thiophene (catalyst poison) concentration, stirring speed and metal nanoparticles size etc. The results showed that maximum activity (100 % conversion of benzene) was obtained at 80 °C and 20 bar pressure with 4 wt% (Ru content) catalyst. The activation energy and TOF were found to be 27.9 kJ mol −1 and 1416.8 h−1, respectively, which indicated higher activity of Ru/γ-Al2O3 catalyst than conventional catalyst for the hydrogenation of benzene to cyclohexane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. da Costa ZP, Landers R, Cobo A, Gomez CAJ (2008) Thermal treatment effects on the Ru/CeO2 catalysts performance for partial hydrogenation of benzene. Appl Surf Sci 254:6849–6853

    Article  Google Scholar 

  2. Halligudi SB, Bajaj HC, Bhatt KN, Krishnaratnam M (1992) Hydrogenation of benzene to cyclohexane catalyzed by rhodium(I) complex supported on montmorillonite clay. React Kinet Catal Lett 48:547–552

    Article  CAS  Google Scholar 

  3. Zielinski M, Pietrowski M, Wojciechowska M (2009) The effect of preparation of Ni/MgF2 catalysts on the hydrogenation of benzene activity. Pol J Environ Stud 18:965–969

    CAS  Google Scholar 

  4. Savva PG, Goundani K, Vakros J, Bourikas K, Fountzoula Ch, Vattis D, Lycourghiotis A, Kordulis Ch (2008) Benzene hydrogenation over Ni/Al2O3 catalysts prepared by conventional and sol–gel techniques. Appl Catal B 79:199–207

    Article  CAS  Google Scholar 

  5. Chou P, Vannice MA (1987) Benzene hydrogenation over supported and unsupported palladium. J Catal 107:129–139

    Article  CAS  Google Scholar 

  6. Lewandowska A, Monteverdi S, Bettahar M, Ziolek M (2002) MCM-41 mesoporous molecular sieves supported nickel—physico-chemical properties and catalytic activity in hydrogenation of benzene. J Mol Catal A Chem 188:85–95

    Article  CAS  Google Scholar 

  7. Chettibi S, Wojcieszak R, Boudjennad EH, Belloni J, Bettahar MM, Keghouche N (2006) Ni–Ce intermetallic phases in CeO2-supported nickel catalysts synthesized by γ-radiolysis. Catal Today 113:157–165

    Article  CAS  Google Scholar 

  8. Nagaveni K, Sivalingam G, Gayen A, Madras G, Hegde MS (2003) Gas-phase hydrogenation of benzene to cyclohexane over combustion-synthesized Ce1−x PtxO2-delta (x = 0.01, 0.02). Catal Lett 88:73–81

    Article  CAS  Google Scholar 

  9. Zhang AM, Dong JL, Xu QH, Rhee HK, Li XL (2004) Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation. Catal Today 93–95:347–352

    Article  Google Scholar 

  10. Wojcieszak R, Zielinski M, Monteverdi S, Bettahar MM (2006) Study of nickel nanoparticles supported on activated carbon prepared by aqueous hydrazine reduction. J Colloid Interface Sci 299:238–248

    Article  CAS  Google Scholar 

  11. Sanchez MA, Mazzieri VA, Sad MR, Pieck CL (2012) Influence of the operating conditions and kinetic analysis of the selective hydrogenation of methyl oleate on Ru–Sn–B/Al2O3 catalysts. Reac Kinet Mech Cat 107:127–139

    Article  CAS  Google Scholar 

  12. Arun V, Sridevi N, Robinson PP, Manju S, Yusuff KKM (2009) Ni(II) and Ru(II) Schiff base complexes as catalysts for the reduction of benzene. J Mol Catal A Chem 304:191–198

    Article  CAS  Google Scholar 

  13. Lu F, Liu J, Xu J (2008) Synthesis of chain-like Ru nanoparticle arrays and its catalytic activity for hydrogenation of phenol in aqueous media. Mater Chem Phys 108:369–374

    Article  CAS  Google Scholar 

  14. Nowicki A, Zhang Y, Leger B, Rolland JP, Bricout H, Monflier E, Roucoux A (2006) Supramolecular shuttle and protective agent: a multiple role of methylated cyclodextrins in the chemoselective hydrogenation of benzene derivatives with ruthenium nanoparticles. Chem Commun 296–298. doi:10.1039/b512838b

  15. Ning JB, Xu J, Liu J, Lu F (2006) Selective hydrogenation of benzene to cyclohexane over colloidal ruthenium catalyst stabilized by silica. Catal Lett 109:175–180

    Article  CAS  Google Scholar 

  16. Paulus UA, Endruschat U, Feldmeyer GJ, Schmidt TJ, Bonnemann H, Behm RJ (2000) New PtRu alloy colloids as precursors for fuel cell catalysts. J Catal 195:383–393

    Article  CAS  Google Scholar 

  17. Liu MH, Yu WY, Liu HF, Zheng JM (1999) Preparation and characterization of polymer-stabilized ruthenium–platinum and ruthenium–palladium bimetallic colloids and their catalytic properties for hydrogenation of o-chloronitrobenzene. J Colloid Interface Sci 214:231–237

    Article  CAS  Google Scholar 

  18. Yan S, Qu P, Wang H, Tian T, Xiao Z (2008) Synthesis of Ru/multiwalled carbon nanotubes by microemulsion for electrochemical supercapacitor. Mater Res Bull 43:2818–2824

    Article  CAS  Google Scholar 

  19. Yang J, Lee JY, Deivaraj TC, Too HP (2004) Preparation and characterization of positively charged ruthenium nanoparticles. J Colloid Interface Sci 271:308–312

    Article  CAS  Google Scholar 

  20. Nowicki A, Boulaire VL, Roucoux A (2007) Nanoheterogeneous catalytic hydrogenation of arenes: evaluation of the surfactant-stabilized aqueous ruthenium (0) colloidal suspension. Adv Synth Catal 349:2326–2330

    Article  CAS  Google Scholar 

  21. Motoyama Y, Takasaki M, Higashi K, Yoon SH, Mochida I, Nagashima H (2006) Highly-dispersed and size-controlled ruthenium nanoparticles on carbon nanofibers: preparation, characterization, and catalysis. Chem Lett 35:876–877

    Article  CAS  Google Scholar 

  22. Debouttiere PJ, Martinez V, Philippot K, Chaudret B (2009) An organometallic approach for the synthesis of water-soluble ruthenium and platinum nanoparticles. Dalton Trans 46:10172–10174

    Article  Google Scholar 

  23. Nandanwar SU, Chakraborty M, Mukhopadhyay S, Shenoy KT (2011) Stability of ruthenium nanoparticles synthesized by solvothermal method. Cryst Res Technol 46:393–399

    Article  CAS  Google Scholar 

  24. Yan X, Liu H, Liew KY (2001) Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction. J Mater Chem 11:3387–3391

    Article  CAS  Google Scholar 

  25. Zawadzki M, Okal J (2008) Synthesis and structure characterization of Ru nanoparticles stabilized by PVP or γ-Al2O3. Mater Res Bull 43:3111–3121

    Article  CAS  Google Scholar 

  26. He Y, Vinodgopal K, Muthupandian A, Grieser F (2006) Sonochemical synthesis of ruthenium nanoparticles. Res Chem Intermed 32:709–715

    Article  CAS  Google Scholar 

  27. Kim T, Kobayashi K, Nagai M (2007) Preparation and characterization of platinum–ruthenium bimetallic nanoparticles using reverse microemulsions for fuel cell catalyst. J Oleo Sci 56:553–562

    Article  CAS  Google Scholar 

  28. Nandanwar SU, Chakraborty M, Murthy ZVP (2011) Formation of ruthenium nanoparticles by the mixing of two reactive microemulsions. Ind Eng Chem Res 50:11445–11451

    Article  CAS  Google Scholar 

  29. Xiong L, Manthiram A (2005) Catalytic activity of Pt–Ru alloys synthesized by a microemulsion method in direct methanol fuel cells. Solid State Ion 176:385–392

    Article  CAS  Google Scholar 

  30. Paul BK, Nandy D (2007) Dilution method study on the interfacial composition, thermodynamic properties and structural parameters of w/o microemulsions stabilized by 1-pentanol and surfactants in absence and presence of sodium chloride. J Colloid Interface Sci 316:751–761

    Article  CAS  Google Scholar 

  31. Charinpanitkul T, Chanagul A, Dutta J, Rungsardthong U, Tanthapanichakoon W (2005) Effects of cosurfactant on ZnS nanoparticle synthesis in microemulsion. Sci Technol Adv Mater 6:266–271

    Article  CAS  Google Scholar 

  32. Boricha AB, Mody HM, Bajaj HC, Jasra RV (2006) Hydrogenation of benzene over ruthenium-exchanged montmorillonite in the presence of thiophene. Appl Clay Sci 31:120–125

    Article  CAS  Google Scholar 

  33. Bettahar MM, Wojcieszak R, Monteverdi S (2009) NiAg catalysts prepared by reduction of Ni2+ ions in aqueous hydrazine II. Support effect. J Colloid Interface Sci 332:416–424

    Article  CAS  Google Scholar 

  34. Struijk J, Angremond MD, Lucas-de Regt WJM, Scholten JJF (1992) Partial liquid phase hydrogenation of benzene to cyclohexane over ruthenium catalysts in the presence of an aqueous salt solution: I. Preparation, characterization of the catalyst and study of a number of process variables. Appl Catal A 83:263–295

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge the Board of Research in Nuclear Science (BRNS), Mumbai, India, for financial support through Project Ref. No. 2011/36/02-BRNS/0080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandanwar, S.U., Chakraborty, M., Mukhopadhyay, S. et al. Benzene hydrogenation over highly active monodisperse Ru/γ-Al2O3 nanocatalyst synthesized by (w/o) reverse microemulsion. Reac Kinet Mech Cat 108, 473–489 (2013). https://doi.org/10.1007/s11144-012-0526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0526-1

Keywords

Navigation