Skip to main content
Log in

Propan-2-ol dehydration on H-ZSM-5 and H-Y zeolite: a DFT study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic dehydration of propan-2-ol over H-Y and H-ZMS-5 aluminated zeolite models, mimicking both internal cavities and external surfaces, was studied by DFT calculations to investigate the reaction mechanism. After the adsorption of propan-2-ol on the zeolite, the dehydration mechanism starts with alcohol protonation, occurring by one acidic –OH group of the zeolite fragment, followed by a concerted β-elimination to give propene. The catalytic activity is affected by the size of the zeolite cavity, which is larger in the H-Y than in the H-ZMS-5 zeolite. The adsorption energy of the reagent, as an example, decreases in the order: H-Y cavity ≃ H-ZMS-5 surface > H-ZMS-5 cavity, pointing that the adsorption process should preferentially occur either on open surface or inside larger cavity. More interestingly, confinement effects play a twofold role in driving the reaction pathway, resulting in two different effects on the reaction outcomes. The thermodynamic stability, evaluated by the standard free energy difference of the products (water and propene) with respect to the reactant (propan-2-ol), would indeed suggest that the reaction more smoothly could occur for the systems: H-ZMS-5 surface > non-catalyzed > H-Y cavity > H-ZMS-5 cavity. The activation standard free energy of the process conversely decreases in the order: non-catalyzed > H-ZMS-5 surface > H-ZMS-5 cavity > H-Y cavity, suggesting that the reaction is faster inside zeolite cavities. Experimental and computational results are in agreement, giving confidence on the atomistic-level insights provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. T represents one tetrahedral unit, singly including Si or Al and four O atoms.

  2. Non-concerted mechanisms were also attempted, without being successful.

  3. The enthalpy value is ca. 125 kJ mol−1 at concentrations of propan-2-ol per H-ZSM-5 grams larger than 600 μmol g−1. The latter correspond to the concentrations mimicked by the 22T and 26T H-ZSM-5 systems.

References

  1. Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614. doi:10.1021/cr00035a006

    Article  CAS  Google Scholar 

  2. Busca G (2007) Acid catalysts in industrial hydrocarbon chemistry. Chem Rev 107:5366–5410. doi:10.1021/cr068042e

    Article  CAS  Google Scholar 

  3. Borges P, Ramos Pinto R, Oliveira R, Lemos MANDA, Lemos F, Védrine JC, Derouane EG, Ramôa Ribeiro F (2009) Contributions for the study of the acid transformation of hydrocarbons over zeolites. J Mol Catal A 305:60–68. doi:10.1016/j.molcata.2009.01.031

    Article  CAS  Google Scholar 

  4. Dhakshinamoorthy A, Alvaro M, Corma A, Garcia H (2011) Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Trans 40:6344–6360. doi:10.1039/C1DT10354G

    Article  CAS  Google Scholar 

  5. Delahay G, Coq B (2002) Pollution abatement using zeolite: state of the art and further needs. In: Guisnet M, Gilson J-P (eds) Zeolites for cleaner technologies, volume 3 of catalytic science series, chapter 16. Imperial College Press, London, pp 345–374

    Chapter  Google Scholar 

  6. Damin A, Bonino F, Ricchiardi G, Bordiga S, Zecchina A, Lamberti C (2002) Effect of NH3 adsorption on the structural and vibrational properties of TS-1. J Phys Chem B 106:7524–7526. doi:10.1021/jp0257698

    Article  CAS  Google Scholar 

  7. Boronat M, Concepción P, Corma A, Renz M, Valencia S (2005) Determination of the catalytically active oxidation Lewis acid sites in Sn-Beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J Catal 234:111–118. doi:10.1016/j.jcat.2005.05.023

    Article  CAS  Google Scholar 

  8. Wang H, Turner EA, Huang Y (2006) Investigations of the adsorption of n-pentane in several representative zeolites. J Phys Chem B 110:8240–8249. doi:10.1021/jp060775f

    Article  CAS  Google Scholar 

  9. Ferrante F, Rubino T, Duca D (2011) Butene isomerization and double-bond migration on the H-ZSM-5 outer surface: a density functional theory study. J Phys Chem C 115:14862–14868. doi:10.1021/jp203284f

    Article  CAS  Google Scholar 

  10. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TonVW, Joensen F, Bordiga S, PetterLillerud K (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed Engl 51(24):5810–5831. doi:10.1002/anie.201103657

    Article  CAS  Google Scholar 

  11. Demuth T, Rozanska X, Benco L, Hafner J, van Santen RA, Toulhoat H (2003) Catalytic isomerization of 2-pentene in H-ZSM-22. A DFT investigation. J Catal 214:68–77. doi:10.1016/S0021-9517(02)00074-X

    CAS  Google Scholar 

  12. Nieminen V, Sierka M, Murzin DY, Sauer J (2005) Stabilities of C3–C5 alkoxide species inside H-Fer zeolite: a hybrid QM/MM study. J Catal 231:393–404. doi:10.1016/j.jcat.2005.01.035

    Article  CAS  Google Scholar 

  13. Tuma C, Sauer J (2006) Treating dispersion effects in extended systems by hybrid MP2:DFT calculations—protonation of isobutene in zeolite ferrierite. Phys Chem Chem Phys 8:3955–3965. doi:10.1039/b608262a

    Article  CAS  Google Scholar 

  14. Sommer J, Jost R (2000) Carbenium and carbonium ions in liquid- and solid-superacid-catalyzed activation of small alkanes. Pure Appl Chem 72:2309–2318. doi:10.1351/pac200072122309

    Article  CAS  Google Scholar 

  15. Truitt MJ, Toporek SS, Rovira-Truitt R, White JL (2006) Alkane C–H bond activation in zeolites: evidence for direct protium exchange. J Am Chem Soc 128:1847–1852. doi:10.1021/ja0558802

    Article  CAS  Google Scholar 

  16. Milas I, Nascimento MAC (2006) A density functional study on the effect of the zeolite cavity on its catalytic activity: the dehydrogenation and cracking reactions of isobutane over HZSM-5 and HY zeolites. Chem Phys Lett 418:368–372. doi:10.1016/j.cplett.2005.10.149

    Article  CAS  Google Scholar 

  17. Wang X, Carabineiro H, Lemos F, Lemos MANDA, Ramôa Ribeiro F (2004) Propane conversion over a H-ZSM5 acid catalyst: part 1. observed kinetics. J Mol Catal A 216:131–137. doi:10.1016/j.molcata.2004.02.015

    Article  CAS  Google Scholar 

  18. Boronat M, Viruela PM, Corma A (2004) Reaction intermediates in acid catalysis by zeolites: prediction of the relative tendency to form alkoxides or carbocations as a function of hydrocarbon nature and active site structure. J Am Chem Soc 126:3300–3309. doi:10.1021/ja039432a

    Article  CAS  Google Scholar 

  19. Vázquez P, Pizzio L, Cáceres C, Blanco M, Thomas H, Alesso E, Finkielsztein L, Lantaño B, Moltrasio G, Aguirre J (2000) Silica-supported heteropolyacids as catalysts in alcohol dehydration reactions. J Mol Catal A 161:223–232. doi:10.1016/S1381-1169(00)00346-0

    Article  Google Scholar 

  20. Alesso E, Finkielsztein L, Lantaño B, Moltrasio G, Aguirre J, Vázquez P, Pizzio L, Cáceres C, Blanco M, Thomas H (2001) Dehydration of alcohols catalysed by heteropolyacids supported on silica. J Chem Res 2001(12):508–510. doi:10.3184/030823401103168884

    Article  Google Scholar 

  21. van de Water LGA, van der Waal JC, Jansen JC, Maschmeyer T (2004) Improved catalytic activity upon Ge incorporation into ZSM-5 zeolites. J Catal 223:170–178. doi:10.1016/j.jcat.2004.01.022

    Article  Google Scholar 

  22. Larock RC (1999) Comprehensive organic transformations: a guide to functional group preparations 2 edn. Wiley, New York

    Google Scholar 

  23. Uffe V, Mentzel UV, Shunmugavel S, Hruby SL, Christensen CH, Holm MS (2009) High yield of liquid range olefins obtained by converting i-propanol over zeolite H-ZSM-5. J Am Chem Soc 131:17009–17013. doi:10.1021/ja907692t

    Article  Google Scholar 

  24. Sato K, Sugimoto K, Kyotani T, Shimotsuma N, Kurata T (2012) Laminated mordenite/ZSM-5 hybrid membranes by one-step synthesis: preparation, membrane microstructure and pervaporation performance. Microporous Mesoporous Mater 160(0):85–96. doi:10.1016/j.micromeso.2012.04.053

    Article  CAS  Google Scholar 

  25. Jana SK, Takahashi H, Nakamura M, Kaneko M, Nishida R, Shimizu H, Kugita T, Namba S (2003) Aluminum incorporation in mesoporous MCM-41 molecular sieves and their catalytic performance in acid-catalyzed reactions. Appl Catal A 245:33–41. doi:10.1016/S0926-860X(02)00616-6

    Article  CAS  Google Scholar 

  26. van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev 45:297–319. doi:10.1081/CR-120023908

    Article  Google Scholar 

  27. Gleeson D (2008) A theoretical study of cis-trans isomerisation in H-ZSM5: probing the impact of cluster size and zeolite framework on energetics and structure. J Comput-Aided Mol Des 22:579–585.doi:10.1007/s10822-008-9207-6

    Article  CAS  Google Scholar 

  28. Sun Y-X, Yang J, Zhao L-F, Dai J-X, Sun H (2010) A two-layer ONIOM study on initial reactions of catalytic cracking of 1-butene to produce propene and ethene over HZSM-5 and HFAU zeolites. J Phys Chem C 114(13):5975–5984. doi:10.1021/jp910617m

    Article  CAS  Google Scholar 

  29. Sukrat K, Tunega D, Aquino A, Lischka H, Parasuk V (2012) Proton exchange reactions of C2–C4 alkanes sorbed in ZSM-5 zeolite. Theor Chem Acc 131:1–12. doi:10.1007/s00214-012-1232-9

    Article  CAS  Google Scholar 

  30. Vayssilov GN, Rösch N (2005) Reverse hydrogen spillover in supported subnanosize clusters of the metals of groups 8 to 11 A computational model study. Phys Chem Chem Phys 7:4019–4026. doi:10.1039/b511842e

    Article  CAS  Google Scholar 

  31. Teunissen EH, van Santen RA, Jansen AP, van Duijneveldt FB (1993) Ammonium in zeolites: coordination and solvation effects. J Phys Chem 97:203–210. doi:10.1021/j100103a035

    Article  CAS  Google Scholar 

  32. Teunissen EH, Jansen AP, van Santen RA (1995) Ab-initio embedded cluster study of the adsorption of NH3 and NH +4 in chabazite. J Phys Chem 99:1873–1879. doi:10.1021/j100007a014

    Article  CAS  Google Scholar 

  33. Ivanova Shor EA, Shor AM, Nasluzov VA, Vayssilov GN, Rösch N (2005) Effects of the aluminum content of a zeolite framework: a DFT/MM hybrid approach based on cluster models embedded in an elastic polarizable environment. J Chem Theory Comput 1:459–471. doi:10.1021/ct049910n

    Article  Google Scholar 

  34. Barone G, Casella G, Giuffrida S, Duca D (2007) H-ZSM-5 modified zeolite: quantum chemical models of acidic sites. J Phys Chem C 111:13033–13043. doi:10.1021/jp066652c

    Article  CAS  Google Scholar 

  35. Li Manni G, Barone G, Duca D, Murzin DYu (2010) Systematic conformational search analysis of the SRR and RRR epimers of 7-hydroxymatairesinol. J Phys Org Chem 23:141–147. doi:10.1002/poc.1595

    CAS  Google Scholar 

  36. Barone G, Armata N, Prestianni A, Rubino T, Duca D, Murzin DYu (2009) Confined but-2-ene catalytic isomerization inside H-ZSM-5 models: a DFT study. J Chem Theory Comput 5:1274–1283. doi:10.1021/ct800402k

    Article  CAS  Google Scholar 

  37. Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4:297–306. doi:10.1021/ct700248k

    Article  CAS  Google Scholar 

  38. van Santen RA (1997) The cluster approach to molecular heterogeneous catalysis. J Mol Catal A 115:405–419. doi:10.1016/S1381-1169(96)00347-0

    Article  Google Scholar 

  39. Larin AV, Rybakov AA, Zhidomirov GM (2012) Role of distant Al atoms in alkaline earth zeolites for stabilization of hydroxyl groups. J Phys Chem C 116(3):2399–2410. doi:10.1021/jp205028c

    Article  CAS  Google Scholar 

  40. Zicovich-Wilson CM, Corma A, Viruela P (1994) Electronic confinement of molecules in microscopic pores. A new concept which contributes to explain the catalytic activity of zeolites. J Phys Chem 98:10863–10870. doi:10.1021/j100093a030

    CAS  Google Scholar 

  41. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622. doi:10.1103/PhysRev.46.618

    Article  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas Ö, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komáromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2005) Gaussian 03, Revision D.02. Gaussian Inc., Wallingford CT

    Google Scholar 

  43. Becke AD (1993) Density-functional thermochemistry, III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    CAS  Google Scholar 

  44. Stephens PJ, Devlin JF, Chabalowsky CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  45. Baerlocher C, Meyer WM, Olson DH (2001) Atlas of zeolite framework types, 5 edn. Elsevier, Amsterdam

    Google Scholar 

  46. Database of zeolite structures (2011) http://www.iza-structure.org/databases/. Accessed 21 Dec 2011

  47. Database of zeolite structures, zeolite framework types (2011b) http://izasc.ethz.ch/fmi/ xsl/IZA-SC/ft.xsl. Accessed 21 Dec 2011

  48. Lee CC, Gorte RJ, Farneth WE (1997) Calorimetric study of alcohol and nitrile adsorption complexes in H-ZSM-5. J Phys Chem B 101:3811–3817. doi:10.1021/jp970711s

    Article  CAS  Google Scholar 

  49. Armata N, Baldissin G, Barone G, Cortese R, D’Anna V, Ferrante F, Giuffrida S, Li Manni G, Prestianni A, Rubino T, Duca D (2009) Structural and kinetic DFT characterization of materials to rationalize catalytic performance. Top Catal 52:444–455. doi:10.1007/s11244-008-9176-y

    Article  CAS  Google Scholar 

  50. Barone G, Li Manni G, Prestianni A, Duca D, Bernas H, Murzin DYu (2010) Hidrogenolysis of hydroxymatairesinol on Y derived catalysts: a computational study. J Mol Catal A 333:136–144. doi:10.1016/j.molcata.2010.10.010

    Article  CAS  Google Scholar 

  51. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. doi:10.1080/00268977000101561

    CAS  Google Scholar 

  52. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56. doi:10.1002/(SICI)1096-987X

    Article  CAS  Google Scholar 

  53. Foresman JB, Frisch (1996) Exploring chemistry with electronic structure methods, 2 edition. Gaussian Inc., Pittsburgh

    Google Scholar 

  54. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506. doi:10.1016/0009-2614(88)85250-3

    Article  CAS  Google Scholar 

  55. Saebø S, Almlöf J (1989) Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem Phys Lett 154:83–89. doi:10.1016/0009-2614(89)87442-1

    Article  Google Scholar 

  56. Frisch MJ, Head-Gordon M, Pople JA (1990) Direct MP2 gradient method. Chem Phys Lett 166:275–280. doi:10.1016/0009-2614(90)80029-D

    Article  CAS  Google Scholar 

  57. Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166:281–289. doi:10.1016/0009-2614(90)80030-H

    Article  CAS  Google Scholar 

  58. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, De Frees DJ, Pople JA (1982) Self-consistent molecular orbital methods, XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665. doi:10.1063/1.444267

    CAS  Google Scholar 

  59. Farcasiu M, Degnan FT (1988) The role of external surface activity in the effectiveness of zeolites. Ind Eng Chem Res 27:45–47. doi:10.1021/ie00073a010

    Article  CAS  Google Scholar 

  60. Duca D, Barone G, Varga Zs (2001) Hydrogenation of acetylene-ethylene mixtures on Pd catalysts: computational study on the surface mechanism and on the influence of the carbonaceous deposits. Catal Lett 72:17–23. doi:10.1023/A:1009089227947

    Article  CAS  Google Scholar 

  61. Silva AM, Nascimento MAC (2008) Theoretical study on the nitration of methane by acyl nitrate catalyzed by H-ZSM5 zeolite. J Phys Chem A 112:8916–8919. doi:10.1021/jp801592w

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Palermo and by the Italian Ministero dell’Istruzione, dell’Università à e della Ricerca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Duca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prestianni, A., Cortese, R. & Duca, D. Propan-2-ol dehydration on H-ZSM-5 and H-Y zeolite: a DFT study. Reac Kinet Mech Cat 108, 565–582 (2013). https://doi.org/10.1007/s11144-012-0522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0522-5

Keywords

Navigation