Skip to main content
Log in

An analysis of the first steps of phenol adsorption-oxidation over coprecipitated Mn–Ce catalysts: a DRIFTS study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of Mn–Ce(M) solids (M = K or Na), with molar ratios 100–0, 50–50 and 0–100 were prepared by co-precipitation of manganese and cerium nitrate from NaOH or KOH solutions at pH = 11. In addition, part of the solids precipitated with NaOH were dried and impregnated with a Cu2+ salt. The solids were characterized by XRD, Specific Surface Area, XPS and EDS. The characterization analyses show the formation of Mn mixed oxides with different oxidation states (Mn3+, Mn4+), for samples without Ce or Mn–Ce(M) 50–50. In the latter solid and in the one where there is no Mn, the formation of CeO2 (fluorite type) was detected. The samples were tested in the phenol removal in water at 100 °C and at atmospheric pressure with the aim to analyze the adsorbed species in the first stage of the adsorption-oxidation mechanisms. The results indicate, on the one hand, that [MnOx] is the active species in the process and that the most active solids are those that present (i) a higher concentration of OI, (ii) a higher amount of Mn4+ ions. DRIFT spectroscopy showed a possible mechanism of phenol adsorption on two sites, in the first one by H interaction of OH (phenol) with an OH of the catalyst and in the second, by the formation of a phenolate species between an O (OH phenol) and Mnn+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jordan W, van Barnevel H, Gerlich O, Kleine M, Ulrico J (2002) “Ullmann’s encyclopaedia of industrial” chemistry. Wiley-VCH Verlag, New York

    Google Scholar 

  2. Canadian Environmental Protection Act, Priority Substances List Assessment Report: Phenol (2000) Minister of Public Works and Government Services

  3. Busca G, Berardinelli S, Resini C, Arrighi L (2008) J Hazard Mater 160:265–288

    Article  CAS  Google Scholar 

  4. Sanabria N, Molina R, Moreno S (2010) Catal Lett 130:664–671

    Article  Google Scholar 

  5. Resini C, Catania F, Berardinelli S, Paladino O, Busca G (2008) Appl Catal B 84:678–683

    Article  CAS  Google Scholar 

  6. Zhar S, Wang X, Huo M (2010) Appl Catal B 97:127–134

    Article  Google Scholar 

  7. Hu B, Chen C, Frueh S, Jin L, Joesten R, Suib S (2010) J Phys Chem 114:9835–9844

    CAS  Google Scholar 

  8. Abecassis-Wolfovich M, Landau M, Brenner A, Herskowitz M (2004) Ind Eng Chem Res 43:5089–5097

    Article  CAS  Google Scholar 

  9. Arena F, Negro J, Parmaliana A, Spadaro L, Trunfio G (2007) Ind Eng Chem Res 46:6724–6731

    Article  CAS  Google Scholar 

  10. Kouraichi R, Delgado J, López Castro J, Stitou M, Rodriguez Izquierdo J, Cauqui M (2010) Catal Today 154:195–201

    Article  CAS  Google Scholar 

  11. Imamura S, Dol A, Ishida S (1985) Ind Eng Chem Prod Res Dev 24:75–80

    Article  CAS  Google Scholar 

  12. Tang X, Chen J, Li Y, Li Y, Xu Y, Shen W (2006) Chem Eng J 118:119–125

    Article  CAS  Google Scholar 

  13. Hussain S, Sayari A, Larachi F (2001) Appl Catal B 34:1–9

    Article  CAS  Google Scholar 

  14. Larachi F, Pierre J, Adnot A, Bernis A (2002) Appl Surf Sci 195:236–250

    Article  CAS  Google Scholar 

  15. Xing X, Yu P, Xu M, Wu X, Li S (2008) J Phys Chem C 112:15526–15531

    Article  CAS  Google Scholar 

  16. Galakhov V, Demeter M, Bartkowski S, Neumann M, Ovechkina N, Kurmaev E, Lobachevskaya N, Ya M, Mukovskii J, Mitchell J, Ederer D (2002) Phys Rev B 65:113102–113106

    Article  Google Scholar 

  17. Oku M (1995) J Elec Spectrosc Relat Phenom 74:135–148

    Article  CAS  Google Scholar 

  18. Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) Appl Catal B 62:265–273

    Article  CAS  Google Scholar 

  19. Chapelle A, Yaacob M, Pasquet I, Presmanes L, Bernabé A, Tailhades P, Du Pleiss J, Kalantarzadeh K (2011) Sens Actuators B: Chem 153:117–124

    Article  Google Scholar 

  20. Ji P, Zhang J, Chen F, Anpo M (2008) J Phys Chem C 112:17809–17813

    Article  CAS  Google Scholar 

  21. Damynova S, Bueno J (2003) Appl Catal A 253:135–141

    Article  Google Scholar 

  22. Abecassis-Wolfovich M, Jothiramalingam R, Landau M, Herskowitz M, Viswanathan B, Varadarajan T (2005) Appl Catal B 59:91–98

    Article  CAS  Google Scholar 

  23. Rives V, Del Arco M, Prieto M (2004) Bol Soc Esp Ceram V 43:142–147

    Article  CAS  Google Scholar 

  24. Peluso M, Sambeth J, Thomas H (2003) React Kinect Catal Lett 80:41–47

    Google Scholar 

  25. Li T, Chiang S, Liaw B, Chen Y (2011) Appl Catal B 103:143–148

    Article  CAS  Google Scholar 

  26. Li J, Zhu P, Zhou R (2011) J Power Sour 196:9590–9598

    Article  CAS  Google Scholar 

  27. Cheng D, Hou Ch, Chen F, Zhan X (2009) React Kinet Catal Lett 97:217–223

    Article  CAS  Google Scholar 

  28. Magne P, Walker P (1986) Carbon 24:101–107

    Article  CAS  Google Scholar 

  29. Santiago A, Sousa J, Guedes R, Jerônimo C, Benachour M (2006) J Hazard Mater 138:325–330

    Article  CAS  Google Scholar 

  30. Cheng D, Hou Ch, Chen F, Zhan X (2009) J Rare Earths 27:723–727

    Article  Google Scholar 

  31. Arena F, Italian C, Ranieri A, Saja C (2010) Appl Catal B 99:321–328

    Article  CAS  Google Scholar 

  32. Bride M, Kung K (1991) Environ Toxicol Chem 10:441–448

    Article  Google Scholar 

  33. Bhargava S, Tardio J, Prasad J, Folger K, Akolekar D, Grocott S (2006) Ind Eng Chem Res 45:1221–1258

    Article  CAS  Google Scholar 

  34. Hamoudi S, Sayari A, Belkacemi K, Bonneviot L, Larachi F (2000) Catal Today 62:379–388

    Article  CAS  Google Scholar 

  35. Zhang H, Yang W, Li D, Wang X (2009) React Kinect Catal Lett 97:263–268

    Article  CAS  Google Scholar 

  36. Picasso G, Gutiérrez M, Pina M, Herguido J (2007) Chem Eng J 126:119–130

    Article  CAS  Google Scholar 

  37. Shi L, Chu W, Qu F, Luo S (2007) Catal Lett 113:59–64

    Article  CAS  Google Scholar 

  38. Mariey L, Lamotte J, Lavalley J, Tsyganenko N, Tsyganenko A (1996) Catal Lett 41:209–211

    Article  CAS  Google Scholar 

  39. Abbas O, Rebufa C, Dupuy N, Kister J (2008) Talanta 77:200–209

    Article  CAS  Google Scholar 

  40. Tang X, Chen J, Li Y, Li Y, Xu Y, Shen W (2006) Chem Eng J 118:119–125

    Article  CAS  Google Scholar 

  41. Lamaita L, Peluso M, Thomas H, Sambeth J, Minelli G, Porta P (2005) Catal Today 107–108:133–138

    Article  Google Scholar 

  42. Sambeth J, Juan A, Gambaro L, Thomas H (1997) J Mol Catal A: Chem 118:283–291

    Article  CAS  Google Scholar 

  43. Andrade L, Laurindo E, de Oliveira R, Rocha-Filho R, Cass Q (2006) J Braz Chem Soc 17:369–373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CONICET, UNLP and ANPCYT of Argentina for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Sambeth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’alessandro, O., Thomas, H.J. & Sambeth, J.E. An analysis of the first steps of phenol adsorption-oxidation over coprecipitated Mn–Ce catalysts: a DRIFTS study. Reac Kinet Mech Cat 107, 295–309 (2012). https://doi.org/10.1007/s11144-012-0470-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0470-0

Keywords

Navigation