Skip to main content
Log in

Kinetics of oxidation of ponceau 4R in aqueous solutions by Fenton and photo-Fenton processes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A 22 factorial design of experiments complemented with a central point assayed in triplicate was proposed to investigate the influence of initial Fenton’s reagent (H2O2 and Fe2+) concentration on the maximum oxidation of the Ponceau 4R dye in aqueous solution. The reactions took place in batch reactors without (Fenton process) and with (photo-Fenton process) UV irradiation under well-stirred conditions at approximately 25 °C. Based on these preliminary results, the kinetics of color degradation, removal of total organic carbon and consumption of reactants was experimentally investigated for 7200 s at optimal initial concentration of H2O2 and Fe2+. The results show that the Fenton and photo-Fenton process caused approximately 95% of decoloration after only 300 s of reaction and complete color degradation at 7200 s. At this final time of reaction, TOC removals of 97% and approximately 100% were observed when applying Fenton and photo-Fenton conditions, respectively. A toxicity assay revealed that A. salina was not sensitive to the synthetic effluent treated by the photo-Fenton process and diluted with aqueous nutritive solution at 25, 12.5, 10 and 5%. A suggested simplified mechanism involving three elementary reactions was able to reproduce the experimental kinetic results of Fe2+, H2O2 consumption, Fe3+ formation and azo dye degradation. On the whole, the results obtained at the investigated conditions show that the photo-Fenton and Fenton processes are effective processes to achieve TOC reduction and color degradation of Ponceau 4R dye typically found in liquid effluents from the Brazilian confectionary industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Absorbance of aqueous solution of Ponceau 4R (mAu)

E 1 :

Main effect of the initial concentration of H2O2 on dye degradation

E 2 :

Main effect of the initial concentration of Fe2+ on dye degradation

E 12 :

Effect of the interaction between [H2O2]o and [Fe2+]o on dye degradation

k 1 :

Rate constant of reaction 1 (Eq. 1 and Table 2) (s−1)

k 2 :

Rate constant of reaction 2 (Eq. 2 and Table 2) (s−1)

k 3 :

Rate constant of reaction 3 (Eq. 3 and Table 2) (s−1 mM-1)

t :

Time (s)

T :

Temperature (°C)

X 1 :

Coded variable defined in Eq. 9

X 2 :

Coded variable defined in Eq. 10

Y :

Dimensionless concentration of Ponceau 4R dye

α :

Tuned parameter of the simplified kinetic model (Table 2) (dimensionless)

λ :

Wavelength (nm)

[C20H11N2O10S3Na3]:

Concentration of Ponceau 4R (mM)

[Fe2+]:

Concentration of Fe2+ (mM)

[Fe3+]:

Concentration of Fe3+ (mM)

[H2O2]:

Concentration of hydrogen peroxide (mM)

[HO2 ]:

Concentration of HO2 (mM)

[H+]:

Concentration of H+ (mM)

[OH-]:

Concentration of OH- (mM)

[OH]:

Concentration of OH (mM)

calc:

Calculated

exp:

Experimental

o:

Initial

high:

Highest level of the initial concentration of H2O2 or Fe2+ in Table 1

low:

Lowest level of the initial concentration of H2O2 or Fe2+ in Table 1

References

  1. Datamonitor (2011) Confectionery: Advanced Emerging Markets (Brazil, Hungary, Mexico, Poland, South Africa, Taiwan) Industry Guide

  2. Candy Industry (2010). Brazil: An Emerging Powerhouse, 2010. Available at: http://www.candyindustry.com/Articles/Special_Reports/BNP_GUID_9-5-2006_A_10000000000000976914. Last accessed 15/09/2011

  3. O’Neill C, Hawkes FR, Hawkes DL, Lourenço ND, Pinheiro HM, Delée W (1999) J Chem Tech Biot 74:1009–1018

    Article  Google Scholar 

  4. Gonçalves IMC, Gomes A, Brás R, Ferra MIA, Amorim MTP, Porter RS (2000) J Soc Dyers Col 116:393–397

    Google Scholar 

  5. Papic S, Koprivanac N, Bozic AL, Vujevic D, Dragicevic SK, Kusic H, Peternel I (2006) Water Environ Res 78:572–579

    Article  CAS  Google Scholar 

  6. Tony BD, Goyal D, Khanna S (2009) Int Biodeter Biodeg 63:462–469

    Article  CAS  Google Scholar 

  7. Ni Y, Wang Y, Kokot S (2009) Talanta 78:432–441

    Article  CAS  Google Scholar 

  8. Yilmaz E, Memon S, Yilmaz M (2010) J Hazard Mat 174:592–597

    Article  CAS  Google Scholar 

  9. Fernandez C, Larrechi MS, Callao MP (2010) Trend Anal Chem 29:1202–1211

    Article  CAS  Google Scholar 

  10. Enayatzamir K, Tabandeh F, Yakhchali B, Alikhani HA, Couto SR (2009) J Hazard Mater 169:176–181

    Article  CAS  Google Scholar 

  11. Martinez-Huitle CA, Brillas E (2009) App Cat B Environ 87:105–145

    Article  CAS  Google Scholar 

  12. Neamtu M, Yediler A, Siminiceanu I, Macoveanu M, Kettrup A (2004) Dyes Pig 60:61–68

    Article  CAS  Google Scholar 

  13. Rauf MA, Ashraf SS (2009) Chem Eng J 151:10–18

    Article  CAS  Google Scholar 

  14. Tunay O, Kabdasli I, Arslan-Alaton I, Olmez-Hanci T (2010) Chemical oxidation applications for industrial wastewaters. IWA Publishing, London

    Google Scholar 

  15. Ratanatamskul C, Narkwittaya S, Masomboon N, Lu M (2010) Reac Kinet Mech Cat 101:301–311

    Article  CAS  Google Scholar 

  16. Stylidi M, Kondarides DI, Verycios XE (2003) App Cat B Environ 40:271–286

    Article  CAS  Google Scholar 

  17. Gozmen B, Kayan B, Gizir AM, Hesenov A (2009) J Hazard Mat 168:129–136

    Article  Google Scholar 

  18. Tanaka K, Padermpole K, Hisanaga T (2000) Water Res 34:327–333

    Article  CAS  Google Scholar 

  19. Sadik WA, Nashed AW, El-Demerdash A-Gm (2007) J Photochem Photobiol A Chem 189:135–140

    Article  CAS  Google Scholar 

  20. Salem MA, Abdel-Halim ST, El-Sawy AE, Zaki AB (2009) Chemosphere 76:1088–1093

    Article  CAS  Google Scholar 

  21. Igarashi-Mafra L, Bortoletto EC, Barros MASD, Sorbo ACAC, Galliani NA, Tavares CRG (2007) Int J Chem Reac Eng 5:A39

    Google Scholar 

  22. CONAMA (2005) Resolução Nº 357. Conselho Nacional do Meio Ambiente

  23. Lewinsky AA (2007) Hazardous materials and wastewater: treatment, removal and analysis. Nova Science Publishers Inc, New York

    Google Scholar 

  24. Nogueira RFP, Oliveira MC, Paterlini WC (2005) Talanta 66:86–91

    Article  CAS  Google Scholar 

  25. APHA, AWWA, WPCF (1998) Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington

  26. Palácio SM, Espinoza-Quiñones FR, Módenes AN, Oliveira CC, Borba FH, Silva FG Jr (2009) J Hazard Mat 172:330–337

    Article  Google Scholar 

  27. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, Mclaughlin JL (1982) Planta Med 45:31–34

    Article  CAS  Google Scholar 

  28. Jenson VG, Jeffreys GV (1977) Mathematical methods in chemical engineering. Academic Press Limited, San Diego

    Google Scholar 

  29. Wu CFJ, Hamada M (2000) Experiments: planning analysis and parameter design optimization. Wiley, New York

    Google Scholar 

  30. Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  31. Zanoelo EF, Di Celso GM, Kaskantzis G (2007) Biosyst Eng 96:487–494

    Article  Google Scholar 

  32. Almeida MR, Stephani R, Dos Santos HF, Oliveira LFC (2010) J Phys Chem A 114:526–534

    Article  CAS  Google Scholar 

  33. Black & Veatch Corporation (2010) White’s handbook of chlorination and alternative disinfectants. Wiley, New York

    Google Scholar 

  34. Poyatos JM, Muñio MM, Almecija MC, Torres JC, Hontoria E, Osorio F (2010) Water Air Soil Pollut 205:187–204

    Article  CAS  Google Scholar 

  35. Zhang H, Zhang Y, Zhang D (2007) Color Technol 123:101–105

    Article  CAS  Google Scholar 

  36. Bauer R, Fallmann H (1997) Res Chem Intermed 23:341–354

    Article  CAS  Google Scholar 

  37. Gutowska A, Kaluzna-Czplinska J, Jozwiak WKA (2007) Dyes Pig 74:41–46

    Article  CAS  Google Scholar 

  38. Pignatello JJ, Huang LQ (1993) Water Res 27:1731–1736

    Article  CAS  Google Scholar 

  39. Barceló D, Petrovic M (2008) The handbook of environmental chemistry. Emerging contaminants from industrial and municipal waste. Springer Verlag, Berlin/Heidelberg

    Book  Google Scholar 

  40. Papic S, Vujevic D, Doprivanac N, Sinko D (2009) J Hazard Mat 164:1137–1145

    Article  CAS  Google Scholar 

  41. Wang S (2008) Dyes Pig 76:714–720

    Article  CAS  Google Scholar 

  42. Núñez L, García-Hortal JA, Torrades F (2007) Dyes Pig 75:647–652

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everton Fernando Zanoelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benincá, C., Peralta-Zamora, P., Camargo, R.C. et al. Kinetics of oxidation of ponceau 4R in aqueous solutions by Fenton and photo-Fenton processes. Reac Kinet Mech Cat 105, 293–306 (2012). https://doi.org/10.1007/s11144-011-0392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0392-2

Keywords

Navigation