Skip to main content
Log in

Exploration of Ni@Zn-MOCP via a wet impregnation strategy as a hydrogenation catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the current paper, the metal organic coordination polymer Zn4O(OH)2(BDC)2(H2O)2.7 (Zn-MOCP) with high thermal and chemical stability was synthesized by a direct mixing method at room temperature. Then the catalyst Ni@Zn-MOCP (7.5 wt% Ni) was successfully prepared via a wet impregnation strategy employing Ni(acac)2 (acac = acetylacetonate) as the precursor. The hydrogenation of crotonaldehyde was utilized as the probe reaction to explore its catalytic activity. The samples were characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), N2 adsorption–desorption measurements, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). PXRD patterns of Ni@Zn-MOCP showed good coincidence with that of Zn-MOCP, and the pore texture of Zn-MOCP was still maintained after impregnation. Most of Ni(acac)2 over Zn-MOCP were reduced to Ni0 after reduction based on XPS analysis. In terms of the turnover of frequency (TOF) of crotonaldehyde, Ni@Zn-MOCP (53.6 h−1) exhibited much higher activity than the industrial catalyst Ni/SiO2 (29.5 h−1). Furthermore, the reusability of the catalyst Ni@Zn-MOCP over the hydrogenation for crotonaldehyde was tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chae HK, Kim J, Friedrichs OD, O’Keeffe M, Yaghi OM (2003) Angew Chem Int Ed 42:3907

    Article  CAS  Google Scholar 

  2. Dincǎ M, Yu AF, Long JR (2006) J Am Chem Soc 128:8904

    Article  Google Scholar 

  3. Koh K, Wong-Foy AG, Matzger AJ (2009) J Am Chem Soc 131:4184

    Article  CAS  Google Scholar 

  4. Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AMZ, Yaghi OM, Stoddart JF (2010) Angew Chem Int Ed 49:1

    Google Scholar 

  5. Li HL, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276

    Article  CAS  Google Scholar 

  6. Huang LM, Wang HT, Chen JX, Wang ZB, Sun JY, Zhao DY, Yan YS (2003) Microporous Mesopororous Mater 58:105

    Article  CAS  Google Scholar 

  7. Hafizovic J, Bjørgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP (2007) J Am Chem Soc 129:3612

    Article  CAS  Google Scholar 

  8. Choi J, Son W, Kim J, Ahn W (2008) Microporous Mesopororous Mater 116:727

    Article  CAS  Google Scholar 

  9. Biemmi E, Christian S, Stock N, Bein T (2009) Microporous Mesopororous Mater 117:111

    Article  CAS  Google Scholar 

  10. Eddaoud M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469

    Article  Google Scholar 

  11. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127

    Article  CAS  Google Scholar 

  12. Panella B, Hirscher M (2005) Adv Mater 17:538

    Article  CAS  Google Scholar 

  13. Dailly A, Vajo JJ, Ahn CC (2006) J Phys Chem B 110:1099

    Article  CAS  Google Scholar 

  14. Wong-Foy AG, Matzger AJ, Yaghi OM (2006) J Am Chem Soc 128:3494

    Article  CAS  Google Scholar 

  15. Li Y, Yang RT (2007) Langmuir 23:12937

    Article  CAS  Google Scholar 

  16. Britt D, Tranchemontagne D, Yaghi OM (2008) PNAS 105:11623

    Article  CAS  Google Scholar 

  17. Henschel A, Gedrich K, Kraehnert R, Kaskel S (2008) Chem Commun 35:4192

    Article  Google Scholar 

  18. Kleist W, Jutz F, Maciejewski M, Baiker A (2009) Eur J Inorg Chem 2009:3552

    Article  Google Scholar 

  19. Tonigold M, Lu Y, Bredenkötter B, Rieger B, Bahnmüller S, Hitzbleck J, Langstein G, Volkmer D (2009) Angew Chem Int Ed 48:1

    Article  Google Scholar 

  20. Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S (2007) J Am Chem Soc 129:2607

    Article  CAS  Google Scholar 

  21. Müller M, Hermes S, Kähler K, van den Berg MWE, Muhler M, Fischer RA (2008) Chem Mater 20:4576

    Article  Google Scholar 

  22. Maksimchuk N, Timofeeva M, Melgunov M, Shmakov A, Chesalov Y, Dybtsev D, Fedin V, Kholdeeva O (2008) J Catal 257:315

    Article  CAS  Google Scholar 

  23. Tanabe KK, Cohen SM (2010) Inorg Chem 49:6766

    Article  CAS  Google Scholar 

  24. Hermes S, Schröter M-K, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer RW, Fischer RA (2005) Angew Chem Int Ed 44:6237

    Article  CAS  Google Scholar 

  25. Opelt S, Türk S, Dietzsch E, Henschel A, Kaskel S, Klemm E (2008) Catal Commun 9:1286

    Article  CAS  Google Scholar 

  26. Proch S, Herrmannsdörfer J, Kempe R, Kern C, Jess A, Seyfarth L, Senker J (2008) Chem Eur J 14:8204

    Article  CAS  Google Scholar 

  27. Greathouse JA, Allendorf MD (2006) J Am Chem Soc 128:10678

    Article  CAS  Google Scholar 

  28. Ravon U, Domine ME, Gaudillère C, Desmartin-Chomel A, Farrusseng D (2008) New J Chem 32:937

    Article  CAS  Google Scholar 

  29. Farrusseng D, Aguado S, Pinel C (2009) Angew Chem Int Ed 48:7502

    Article  CAS  Google Scholar 

  30. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38:1450

    Article  CAS  Google Scholar 

  31. Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Tetrahedron 64:8553

    Article  CAS  Google Scholar 

  32. Dan Z, Chang DH, Heng J, Hong G (2007) Chem Ind Times 21:8

    Google Scholar 

  33. Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi OM (2005) Science 309:1350

    Article  CAS  Google Scholar 

  34. Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) J Am Chem Soc 127:1504

    Article  CAS  Google Scholar 

  35. Noller H, Lin WM (1984) J Catal 85:25

    Article  CAS  Google Scholar 

  36. Reyes P, Aguirre MC, Pecchi G, Fierro JLG (2000) J Mol Catal A Chem 164:245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the State Key Laboratory for Oxo Synthesis and Selective Oxidation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanling Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Chou, L. & Song, H. Exploration of Ni@Zn-MOCP via a wet impregnation strategy as a hydrogenation catalyst. Reac Kinet Mech Cat 104, 451–465 (2011). https://doi.org/10.1007/s11144-011-0375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0375-3

Keywords

Navigation