Skip to main content
Log in

Surface capped silver nanoparticles over anatase titania: an efficient catalyst for aromatic nitration reactions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Efficient catalysts for the nitration of benzene are prepared by surface capping of Ag nanoparticles using glycerol and urea with their subsequent loading over anatase titania. Herein glucose was used as an environmentally benign reducing agent for the silver ions. The catalyst was characterized and its catalytic activity was evaluated in the low temperature preparation of nitrobenzene. Ag nanoparticle loading gives rise to improved performance when compared to bare anatase titania. The influence of stabilizers and the percentage metal loading of Ag on the catalytic activity was investigated. The increased reactivity of titania seen after Ag nanoparticle loading may be due to the presence of highly dispersed nano sized surface capped Ag. Among the two capping agents studied, glycerol provides maximum efficiency for a short reaction time. These new generation catalysts appear to be an efficient alternative for the conventional use of environmentally hazardous sulfuric acid catalyst. The side reactions are found to be minimal over the present catalytic systems which lead to excellent nitrobenzene selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ullman A (1996) Chem Rev 96:1533–1554

    Article  Google Scholar 

  2. Wang R, Yang J, Zheng Z, Carducci MD, Jiao J, Seraphin S (2001) Angew Chem Int Ed 40:549–552

    Article  CAS  Google Scholar 

  3. Wang S, Zin H (2000) J Phys Chem B 104:5681–5685

    Article  CAS  Google Scholar 

  4. Wang W, Efrima S, Regev O (1998) Langmuir 14:602–610

    Article  CAS  Google Scholar 

  5. Bright RM, Musick MD, Natan MJ (1998) Langmuir 14:5695–5701

    Article  CAS  Google Scholar 

  6. Liz-Marza’n LM, Lado-Tourino I (1996) Langmuir 12:3585–3589

    Article  Google Scholar 

  7. Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, valos-Borja MA, Castillón-Barraza FF, Posada-Amarillas A (2005) Physica E 25:438–448

    Article  CAS  Google Scholar 

  8. Pal T, Sau TK, Jana NR (1997) Langmuir 13:1481–1485

    Article  CAS  Google Scholar 

  9. Mafune F, Kohno J, Takeda Y, Kondow T (2000) J Phys Chem B 104:8333–8337

    Article  CAS  Google Scholar 

  10. Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M (2003) J Colloid Interface Sci 264:396–401

    Article  CAS  Google Scholar 

  11. Gao F, Lu Q, Komarneni S (2005) Chem Mater 17:856–860

    Article  CAS  Google Scholar 

  12. Prasad BLV, Arumugam SK, Bala T, Sastry M (2005) Langmuir 21:822–826

    Article  CAS  Google Scholar 

  13. Gao J, Fu J, Lin C, Lin J, Han Y, Yu X, Pan C (2004) Langmuir 20:9775–9779

    Article  CAS  Google Scholar 

  14. Wang XS, Wang H, Coombs N, Winnik MA, Manners I (2005) J Am Chem Soc 127:8924–8925

    Article  CAS  Google Scholar 

  15. Esumi K, Suzuki A, Yamahira A, Torigoe K (2000) Langmuir 16:2604–2608

    Article  CAS  Google Scholar 

  16. Doty RC, Tshikhudo TR, Brust M, Fernig DG (2005) Chem Mater 17:4630–4635

    Article  CAS  Google Scholar 

  17. Swami A, Jadhav A, Kumar A, Adyanthaya SD, Sastry M (2003) Proc Indian Acad Sci 115:679–687

    Article  CAS  Google Scholar 

  18. Patil V, Mayya S, Pradhan SD, Sastry M (1997) J Am Chem Soc 119:9281–9282

    Article  CAS  Google Scholar 

  19. Ravindran TR, Arora AK, Balamurugan B, Mehta BR (1999) Nanostruct Mater 11:603–609

    Article  CAS  Google Scholar 

  20. Pattabi M, Uchil J (2000) Sol Energy Mater Sol Cell 63:309–314

    Article  CAS  Google Scholar 

  21. Lin SM, Lin FQ, Guo HQ, Zhang ZH, Wang ZG (2000) Solid State Commun 115:615–618

    Article  Google Scholar 

  22. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  23. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  24. Schofield K (1980) Aromatic nitration. Cambridge University Press, Cambridge

    Google Scholar 

  25. Hölderich WF, Bekkum HV (1991) Stud Surf Sci Catal 58:631–726

    Article  Google Scholar 

  26. Venuto PB (1994) Micropor Mater 2:297–411

    Article  CAS  Google Scholar 

  27. Malysheva LV, Paukshtis EA, Ione KG (1995) Catal Rev Sci Eng 37:179–226

    CAS  Google Scholar 

  28. Ione KG (1996) React Kinet Catal Lett 57:275–290

    Article  CAS  Google Scholar 

  29. Millar RW, Eamon CM, Claridge RP (2000) International Annual Conference of ICT, 31st (Energetic Materials) 34/1–34/12

  30. Bertea LE, Keuwenhoven HW, Prins R (1993) Stud Surf Sci Catal 78:607–614

    Article  CAS  Google Scholar 

  31. Bertea LE, Keuwenhoven HW, Prins R (1995) Appl Catal A 129:229–250

    Article  CAS  Google Scholar 

  32. Sato H, Hirose K, Nagai K, Yoshioka H, Nagaoka Y (1998) Appl Catal A 175:201–207

    Article  CAS  Google Scholar 

  33. Sato H, Nagai K, Yoshioka H, Nagaoka Y (1998) Appl Catal A 175:209–213

    Article  CAS  Google Scholar 

  34. Shuwen G, Lijun L, Qingxin C, Junhong D (2010) J Hazard Mater 178:404–408

    Article  Google Scholar 

  35. Brei VV, Prudius SV, Melezhyk OV (2003) Appl Catal A Gen 239:11–16

    Article  CAS  Google Scholar 

  36. Dong F, Qun RS, Jian C, Kai G, Zu LL (2008) Appl Catal A Gen 345:158–163

    Article  Google Scholar 

  37. Binitha NN, Yaakob Z, Reshmi MR, Sugunan S, Ambili VK, Zetty AA (2009) Catal Today 147:76–80

    Article  Google Scholar 

  38. Wei M, Hongzhu M, Bo W (2009) J Hazard Mater 167:707–712

    Article  Google Scholar 

  39. Adriana MS, Marco AM, Elisa MBS, Elizabete J, Marco AF (2009) Appl Catal A 353:101–106

    Article  Google Scholar 

  40. Shali NB, Sugunan S (2007) Mater Res Bull 42:1777–1783

    Article  CAS  Google Scholar 

  41. Sushil KM, Pratap P, Shubhangi BU, Mukund KG, Mohan D, Stephan R, Erhard K (2005) J Mol Catal A Chem 234:51–57

    Article  Google Scholar 

  42. Jiaqiang W, Hua F, Ying L, Junjie L, Zhiying Y (2006) J Mol Catal A Chem 250:75–79

    Article  Google Scholar 

  43. Sunajadevi KR, Sugunan S (2004) Catal Commun 5:575–581

    Article  CAS  Google Scholar 

  44. Tirtha S, Basudeb K (2011) Solid State Sci 13:887–895

    Article  Google Scholar 

  45. Jiang T, Miao L, Tanemura S, Tanemura M, Xu G, Wang RP (2009) Superlattice Microsoft 46:159–165

    Article  CAS  Google Scholar 

  46. Paulo AQ, Nuno MCO, Cristina MSGB (2005) Chem Eng J 108:1–11

    Article  Google Scholar 

  47. Yubin Y, Jin N, Zhengbo Z, Shuojin W (2005) Appl Catal A Gen 295:170–176

    Article  Google Scholar 

  48. Zaldivar JM, Molga E, Alos MA, Hernhndez H, Westerterp KR (1995) Chem Eng Process 34:543–559

    Article  CAS  Google Scholar 

  49. Nivedita SC, Manohar RS (2006) Catal Commun 7:443–449

    Article  Google Scholar 

  50. Keith S, Mansour DA, Gamal AE (2010) Catal Lett 134:270–278

    Article  Google Scholar 

  51. Jin KC, Young TK, Young GK, Yoon SL, Si YS, Kyoo HC, Bon SL (2006) Res Chem Intermed 32:759–766

    Article  Google Scholar 

  52. Choudary BM, Sateesh M, Kanatam ML, Rao KK, Prasad KVR, Raghavan KV, Sarma JA (2000) Chem Commun 1:25–26

    Article  Google Scholar 

  53. Bahulayan D, Narayan G, Sreekumar V, Lalithambika M (2002) Synth Commun 32:3565–3574

    Article  CAS  Google Scholar 

  54. Huang G, Guo Y, Zhou H, Zhao S, Liu S, Wang A, Wei J (2007) J Mol Catal A 273:144–148

    Article  CAS  Google Scholar 

  55. Black JF (1978) J Am Chem Soc 100:527–535

    Article  CAS  Google Scholar 

  56. Guo CC, Huang G, Xiao BZ, Dong CG (2003) Appl Catal A Gen 247:261–267

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank STIC, CUSAT, Cochin -22, for providing the analytical results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanan Binitha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suraja, V., Yaakob, Z., Binitha, N. et al. Surface capped silver nanoparticles over anatase titania: an efficient catalyst for aromatic nitration reactions. Reac Kinet Mech Cat 105, 361–371 (2012). https://doi.org/10.1007/s11144-011-0362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0362-8

Keywords

Navigation