Skip to main content
Log in

A highly robust and reusable polyimide-supported nanosilver catalyst for the reduction of 4-nitrophenol

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A simple and efficient method for in situ preparation of highly stable polyimide (PI)-supported silver nanoparticles (AgNPs) was proposed. This process achieves excellent dispersion and high stability of AgNPs in the PI matrix. The formation of AgNPs in PI and the morphology evolution of PI/Ag nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and x-ray photoelectron spectra studies. The catalytic properties of these PI-supported AgNPs were investigated by monitoring the reduction of 4-nitrophenol by excess NaBH4 in water. The catalytic reaction was observed to have a pseudo first-order rate constant of 0.567 min−1 (9.45 × 10−3 s−1), which is comparable to other heterogeneous silver catalysts reported in the literature. Notably, the PI-supported AgNPs retained their relatively high catalytic activity over seven recycles with almost no leaching of catalytic species in the reaction solution. Moreover, the catalytic activity of the catalyst is still quite appreciable even after a six-month shelf-storage under room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. Y. Zhu, C.N. Lee, R.A. Kemp, N.S. Hosmane, and J.A. Maguire: Latest developments in the catalytic application of nanoscaled neutral group 8–10 metals. Chem. — Asian J. 3, 650 (2008).

    Article  CAS  Google Scholar 

  2. J.M. Campelo, D. Luna, R. Luque, J.M. Marinas, and A.A. Romero: Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2, 18 (2009).

    Article  CAS  Google Scholar 

  3. N.J. Halas, S. Lal, W-S. Chang, S. Link, and P. Nordlander: Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913 (2011).

    Article  CAS  Google Scholar 

  4. P.K. Jain, X. Huang, I.H. El-Sayed, and M.A. El-Sayed: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578 (2008).

    Article  CAS  Google Scholar 

  5. J.A. Polo and A. Lakhtakia: Surface electromagnetic waves: A review. Laser Photonics Rev. 5, 234 (2011).

    Article  Google Scholar 

  6. C. Marambio-Jones and E.M. Hoek: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12, 1531 (2010).

    Article  CAS  Google Scholar 

  7. M. Zhu, C. Wang, D. Meng, and G. Diao: In situ synthesis of silver nanostructures on magnetic Fe3O4@C core–shell nanocomposites and their application in catalytic reduction reactions. J. Mater. Chem. A 1, 2118 (2013).

    Article  CAS  Google Scholar 

  8. S. Jana, S.K. Ghosh, S. Nath, S. Pande, S. Praharaj, S. Panigrahi, S. Basu, T. Endo, and T. Pal: Synthesis of silver nanoshell-coated cationic polystyrene beads: A solid phase catalyst for the reduction of 4-nitrophenol. Appl. Catal., A 313, 41 (2006).

    Article  CAS  Google Scholar 

  9. P. Christopher and S. Linic: Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. ChemCatChem 2, 78 (2010).

    Article  CAS  Google Scholar 

  10. D-H. Zhang, H-B. Li, G-D. Li, and J-S. Chen: Magnetically recyclable Ag-ferrite catalysts: General synthesis and support effects in the epoxidation of styrene. Dalton Trans. 47, 10527 (2009).

    Article  CAS  Google Scholar 

  11. P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, and Y. Liu: In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3, 3357 (2011).

    Article  CAS  Google Scholar 

  12. A. Murugadoss and A. Chattopadhyay: A’green’chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 19, 015603 (2008).

    Article  CAS  Google Scholar 

  13. A.M. Signori, K.d.O. Santos, R. Eising, B.L. Albuquerque, F.C. Giacomelli, and J.B. Domingos: Formation of catalytic silver nanoparticles supported on branched polyethyleneimine derivatives. Langmuir 26, 17772 (2010).

    Article  CAS  Google Scholar 

  14. C. Wang, H. Yin, R. Chan, S. Peng, S. Dai, and S. Sun: One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation. Chem. Mater. 21, 433 (2009).

    Article  CAS  Google Scholar 

  15. R.B. Merrifield: Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149 (1963).

    Article  CAS  Google Scholar 

  16. D.E. Bergbreiter, J. Tian, and C. Hongfa: Using soluble polymer supports to facilitate homogeneous catalysis. Chem. Rev. 109, 530 (2009).

    Article  CAS  Google Scholar 

  17. J. Lu and P.H. Toy: Organic polymer supports for synthesis and for reagent and catalyst immobilization. Chem. Rev. 109, 815 (2009).

    Article  CAS  Google Scholar 

  18. B. Clapham, T.S. Reger, and K.D. Janda: Polymer-supported catalysis in synthetic organic chemistry. Tetrahedron 57, 4637 (2001).

    Article  CAS  Google Scholar 

  19. L. Wu, Y. Zhang, and Y-G. Ji: Homogeneous recyclable catalysts based on metal nanoparticles for organic synthesis. Curr. Org. Chem. 17, 1288 (2013).

    Article  CAS  Google Scholar 

  20. Y. Wang, Z. Xiao, and L. Wu: Metal-nanoparticles supported on solid as heterogeneous catalysts. Curr. Org. Chem. 17, 1325 (2013).

    Article  CAS  Google Scholar 

  21. P.G.N. Mertens, P. Vandezande, X. Ye, H. Poelman, D.E. De Vos, and I.F.J. Vankelecom: Membrane-occluded gold-palladium nanoclusters as heterogeneous catalysts for the selective oxidation of alcohols to carbonyl compounds. Adv. Synth. Catal. 350, 1241 (2008).

    Article  CAS  Google Scholar 

  22. B.M. Dioos, I.F. Vankelecom, and P.A. Jacobs: Aspects of immobilisation of catalysts on polymeric supports. Adv. Synth. Catal. 348, 1413 (2006).

    Article  CAS  Google Scholar 

  23. D-J. Liaw, K-L. Wang, Y-C. Huang, K-R. Lee, J-Y. Lai, and C-S. Ha: Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 37, 907 (2012).

    Article  CAS  Google Scholar 

  24. A. Quaranta, S. Carturan, M. Bonafini, G. Maggioni, M. Tonezzer, G. Mattei, C. de Julian Fernandez, G. Della Mea, and P. Mazzoldi: Optical sensing to organic vapors of fluorinated polyimide nanocomposites containing silver nanoclusters. Sens. Actuators, B 118, 418 (2006).

    Article  CAS  Google Scholar 

  25. K. Vanherck, I. Vankelecom, and T. Verbiest: Improving fluxes of polyimide membranes containing gold nanoparticles by photothermal heating. J. Membr. Sci. 373, 5 (2011).

    Article  CAS  Google Scholar 

  26. S.R. Halper and R.M. Villahermosa: Cobalt-containing polyimides for moisture sensing and absorption. ACS Appl. Mater. Interfaces 1, 1041 (2009).

    Article  CAS  Google Scholar 

  27. S. Park, K. Kim, D.M. Kim, W. Kwon, J. Choi, and M. Ree: High temperature polyimide containing anthracene moiety and its structure, and interface, and nonvolatile memory behavior. ACS Appl. Mater. Interfaces 3, 765 (2011).

    Article  CAS  Google Scholar 

  28. C. Samyn, T. Verbiest, and A. Persoons: Second-order non-linear optical polymers. Macromol. Rapid Commun. 21(1), 1–15 (2000).

    Article  CAS  Google Scholar 

  29. Y. Matsumura, Y. Enomoto, T. Tsuruoka, K. Akamatsu, and H. Nawafune: Fabrication of copper damascene patterns on polyimide using direct metallization on trench templates generated by imprint lithography. Langmuir 26, 12448 (2010).

    Article  CAS  Google Scholar 

  30. J-H. Ahn, J-C. Kim, S-K. Ihm, C-G. Oh, and D.C. Sherrington: Epoxidation of olefins by molybdenum (VI) catalysts supported on functional polyimide particulates. Ind. Eng. Chem. Res. 44, 8560 (2005).

    Article  CAS  Google Scholar 

  31. R. Jin, Z. Bian, J. Li, M. Ding, and L. Gao: ZIF-8 crystal coatings on a polyimide substrate and their catalytic behaviours for the Knoevenagel reaction. Dalton Trans. 42, 3936 (2013).

    Article  CAS  Google Scholar 

  32. J-H. Ahn and D.C. Sherrington: Wacker oxidation of Oct-1-ene using a palladium (II) complex supported on cyano-functionalized polyimide beads. Macromolecules 29, 4164 (1996).

    Article  CAS  Google Scholar 

  33. J. Huang, X. Qian, J. Yin, Z. Zhu, and H. Xu: Preparation of soluble polyimide–silver nanocomposites by a convenient ultraviolet irradiation technique. Mater. Chem. Phys. 69, 172 (2001).

    Article  CAS  Google Scholar 

  34. Q. Zhang, D. Wu, S. Qi, Z. Wu, X. Yang, and R. Jin: Preparation of ultra-fine polyimide fibers containing silver nanoparticles via in situ technique. Mater. Lett. 61, 4027 (2007).

    Article  CAS  Google Scholar 

  35. J. Li, Y. Fang, G. He, and H. Li: Preparation and characterization of poly (amic acid)-stabilized silver nanoparticles. J. Cent. South Univ. 20, 1475 (2013).

    Article  CAS  Google Scholar 

  36. P. Herves, M. Pérez-Lorenzo, L.M. Liz-Marzán, J. Dzubiella, Y. Lu, and M. Ballauff: Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev. 41, 5577 (2012).

    Article  CAS  Google Scholar 

  37. R.E. Southward and D.M. Stoakley: Reflective and electrically conductive surface silvered polyimide films and coatings prepared via unusual single-stage self-metallization techniques. Prog. Org. Coat. 41, 99 (2001).

    Article  CAS  Google Scholar 

  38. R.E. Southward and D.W. Thompson: Metal-polyimide nanocomposite films: Single-stage synthesis of silvered polyimide films prepared from silver (I) complexes and BPDA/4, 4’-ODA. Chem. Mater. 16, 1277 (2004).

    Article  CAS  Google Scholar 

  39. S. Qi, X. Shen, Z. Lin, G. Tian, D. Wu, and R. Jin: Synthesis of silver nanocubes with controlled size using water-soluble poly (amic acid) salt as the intermediate via a novel ion-exchange self-assembly technique. Nanoscale 5, 12132 (2013).

    Article  CAS  Google Scholar 

  40. N. Du, C. Wong, M. Feurstein, O.A. Sadik, C. Umbach, and B. Sammakia: Flexible poly (amic acid) conducting polymers: Effect of chemical composition on structural, electrochemical, and mechanical properties. Langmuir 26, 14194 (2010).

    Article  CAS  Google Scholar 

  41. X. Fang, Z. Wang, Z. Yang, L. Gao, Q. Li, and M. Ding: Novel polyimides derived from 2, 3, 3′, 4′-benzophenonetetracarboxylic dianhydride. Polymer 44, 2641 (2003).

    Article  CAS  Google Scholar 

  42. R.E. Southward, D.S. Thompson, D.W. Thompson, M.L. Caplan, and A.K. St.Clair: Synthesis of reflective polyimide films via in situ silver (I) reduction. Chem. Mater. 7, 2171 (1995).

    Article  CAS  Google Scholar 

  43. S. Tang, S. Vongehr, and X. Meng: Carbon spheres with controllable silver nanoparticle doping. J. Phys. Chem. C 114, 977 (2009).

    Article  CAS  Google Scholar 

  44. X. Du, J. He, J. Zhu, L. Sun, and S. An: Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol. Appl. Surf. Sci. 258, 2717 (2012).

    Article  CAS  Google Scholar 

  45. M. Wang, D. Tian, P. Tian, and L. Yuan: Synthesis of micron-SiO2@ nano-Ag particles and their catalytic performance in 4-nitrophenol reduction. Appl. Surf. Sci. 283, 389 (2013).

    Article  CAS  Google Scholar 

  46. S. Deshmukh, R. Dhokale, H. Yadav, S. Achary, and S. Delekar: Titania–supported silver nanoparticles: An efficient and reusable catalyst for reduction of 4-nitrophenol. Appl. Surf. Sci. 273, 676 (2013).

    Article  CAS  Google Scholar 

  47. X. Huang, Y. Xiao, W. Zhang, and M. Lang: In-situ formation of silver nanoparticles stabilized by amphiphilic star-shaped copolymer and their catalytic application. Appl. Surf. Sci. 258, 2655 (2012).

    Article  CAS  Google Scholar 

  48. M. Chang, T. Kim, H-W. Park, M. Kang, E. Reichmanis, and H. Yoon: Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach. ACS Appl. Mater. Interfaces 4, 4357 (2012).

    Article  CAS  Google Scholar 

  49. N. Pradhan, A. Pal, and T. Pal: Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf., A 196, 247 (2002).

    Article  CAS  Google Scholar 

  50. B.J. Hornstein and R.G. Finke: Transition-metal nanocluster catalysts: Scaled-up synthesis, characterization, storage conditions, stability, and catalytic activity before and after storage of polyoxoanion-and tetrabutylammonium-stabilized Ir (0) nanoclusters. Chem. Mater. 15, 899 (2003).

    Article  CAS  Google Scholar 

  51. C-W. Yen, M-L. Lin, A. Wang, S-A. Chen, J-M. Chen, and C-Y. Mou: CO oxidation catalyzed by Au–Ag bimetallic nanoparticles supported in mesoporous silica. J. Phys. Chem. C 113, 17831 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Faculty Research Fund of Central South University (2013JSJJ002) and the Hunan Provincial Innovation Foundation for Graduate Students (CX2014B049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengfeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Y., Wang, M. et al. A highly robust and reusable polyimide-supported nanosilver catalyst for the reduction of 4-nitrophenol. Journal of Materials Research 30, 2713–2721 (2015). https://doi.org/10.1557/jmr.2015.258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.258

Navigation