Skip to main content
Log in

Photodegradation of chloromycetin in aqueous solutions: kinetics and influencing factors

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This study of photodegradation of the antibiotic chloromycetin (Cm) in aqueous solution by direct and indirect photolysis included photolysis under UV-C light (λ = 254 nm) and photo-oxidation under UV–vis light (λ ≥ 365 nm) in the presence of iron and humic acid. The factors affecting Cm degradation were studied and are described in detail, including initial pH, ionic strength and initial concentrations of iron and humic acid. Results showed that a degradation efficiency up to 90% was achieved by direct photolysis of Cm at pH 5–7 and the calculated quantum yield was 0.084. Higher salt content (NaCl, 0.01–0.5 M) was found to benefit direct photolysis. Indirect photolysis of Cm in the presence of iron(III) formed OH radicals at pH ~ 3. Under UV–vis light, increased pH resulted in a significant decrease in the efficiency of indirect photolysis. Direct and indirect photolysis reactions both followed a pseudo first-order kinetic law. Humic acid tended to inhibit the photodegradation of Cm under the conditions of this work, implying that photosensitization of humic acid did not play any role in the photodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Daughton CG, Ternes TA (1999) Environ Health Perspect 107:907

    Article  CAS  Google Scholar 

  2. Jorgensen SE, Halling-Sorensen B (2000) Chemosphere 40:691

    Article  CAS  Google Scholar 

  3. Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009) Environ Pollut 157:1721

    Article  Google Scholar 

  4. Lishman L, Smyth SA, Sarafin K, Kleywegt S, Toito J, Peart T, Lee B, Servos M, Beland M, Seto P (2006) Sci Total Environ 367:544

    Article  CAS  Google Scholar 

  5. Kagle J, Porter AW, Murdoch RW, Rivera-Cancel G, Hay AG (2009) Adv Appl Microbiol 67:65

    Article  CAS  Google Scholar 

  6. Ehrlich J, Bartz QR, Smith RM, Joslyn DA, Burkholder PR (1947) Science 106:417

    Article  CAS  Google Scholar 

  7. Woodward KN (2004) In: Watson DH (ed) Pesticide, veterinary and other residues in food. Woodhead Publishing Ltd., Cambridge, p 176

    Google Scholar 

  8. Gikas E, Kormali P, Tsipi D, Tsarbopoulos A (2004) Agric Food Chem 52:1025

    Article  CAS  Google Scholar 

  9. Wongtavatchai J, McLean JG, Ramos F, Arnold D (2004) In: Toxicological evaluation of certain veterinary drug residues in food (WHO food additives series no. 53). Prepared by the sixty-second meeting of the Joint FAO/WHO expert committee on food additives (JECFA). World Health Organization, Geneva, p 7

  10. Peng XZ, Wang ZD, Kuang WX, Tan JH, Li K (2006) Sci Total Environ 371:314

    Article  CAS  Google Scholar 

  11. Heberer T (2002) Toxicol Lett 131:5

    Article  CAS  Google Scholar 

  12. Ellis JB (2006) Environ Pollut 144:184

    Article  CAS  Google Scholar 

  13. Kim I, Tanaka H (2009) Environ Int 35:793

    Article  CAS  Google Scholar 

  14. Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) J Hazard Mater 149:631

    Article  CAS  Google Scholar 

  15. Shih IK (1971) J Pharm Sci 60:1889

    Article  CAS  Google Scholar 

  16. Barg R, Umiel N, Nitzan Y (1983) Plant Cell Environ 6:83

    Article  CAS  Google Scholar 

  17. de Vries H, Hemelaar PJ, Gevers AC, van Henegouwen GMB (1994) Photochem Photobiol 60:249

    Article  Google Scholar 

  18. Bautista JAG, Mateo JVG, Calatayud MJ (2000) J Anal Chim Acta 404:141

    Article  CAS  Google Scholar 

  19. Milano JC, Loste-Berdot P, Vernet JL (1995) Environ Technol 16:1101

    Article  CAS  Google Scholar 

  20. Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I (2008) Water Res 42:386

    Article  CAS  Google Scholar 

  21. Bartz QR (1948) J Biol Chem 172:445

    CAS  Google Scholar 

  22. Wu F, Li J, Peng ZE, Deng NS (2008) Chemosphere 72:407

    Article  CAS  Google Scholar 

  23. Wang BB, Wu F, Li PX, Deng NS (2007) React Kinet Catal Lett 92:3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Natural Science Foundation of PR China (No. 40503016). We thank the anonymous referees’ comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danna Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, D., Huang, W., Wu, F. et al. Photodegradation of chloromycetin in aqueous solutions: kinetics and influencing factors. Reac Kinet Mech Cat 100, 45–53 (2010). https://doi.org/10.1007/s11144-010-0149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-010-0149-3

Keywords

Navigation