Skip to main content
Log in

Frequency-Tunable Gyrotron with External Reflections

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe the concept of a subterahertz gyrotron with frequency tuning, which is based on the regime of a resonance backward-wave oscillator with a combination of an irregular low-Q cavity and a narrow-band external reflector. The simulation performed for the gyrotron at the fundamental cyclotron resonance demonstrates the possibility of creating gyrotrons with high efficiency (10–30%) ensured in a wide frequency range (about 10%). For the gyrotron at the second cyclotron harmonic, the calculations predict that a gyrotron with frequency tuning in a band about 1% can be implemented with an efficiency of 5–10%. A possible solution of a problem of the narrow-band external frequency-tunable reflector is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A.Nanni, A.B.Barnes, R. G. Griffin, and R. J.Temkin, IEEE Trans. Terahertz Sci. Technol., 1, No. 1, 145–163 (2011). https://doi.org/https://doi.org/10.1109/TTHZ.2011.2159546

    Article  ADS  Google Scholar 

  2. G. Y. Golubiatnikov, M. A.Koshelev, A. I.Tsvetkov, et al., IEEE Trans. Terahertz Sci. Technol., 10, No. 5, 502–512 (2020). https://doi.org/10.1109/TTHZ.2020.2984459

  3. M. Blank and K. Felch, eMagRes, 7, No. 4, 155–166 (2018). https://doi.org/10.1002/9780470034590.emrstm1582

  4. V. Denysenkov, M. J.Prandolini, M. Gafurov, et al., Phys. Chem. Chem. Phys., 12, 5786–5790 (2010). https://doi.org/https://doi.org/10.1039/C003697H

    Article  Google Scholar 

  5. M.Yu.Glyavin, G.G.Denisov, V. E. Zapevalov, et al., Phys. Usp., 59, 595–604 (2016). https://doi.org/https://doi.org/10.3367/ufne.2016.02.037801

    Article  ADS  Google Scholar 

  6. M. A.Koshelev, A. I.Tsvetkov, M. V. Morozkin, et al., J. Mol. Spectrosc., 331, 9–16 (2017). https://doi.org/https://doi.org/10.1016/j.jms.2016.10.014

    Article  ADS  Google Scholar 

  7. M.A.Koshelev, G.Yu. Golubyatnikov, I.N.Vilkov, and M.Yu.Tretyakov, J. Quant. Spectrosc. Radiat. Transf., 278, 108001 (2022). https://doi.org/https://doi.org/10.1016/j.jqsrt.2021.108001

    Article  Google Scholar 

  8. H.Vondracek, J.Dielmann-Gessner, W. Lubitz, et al., J. Chem. Phys., 141, No. 22, 22D534 (2014). https://doi.org/https://doi.org/10.1063/1.4903237

    Article  Google Scholar 

  9. W. Zhang, E.R. Brown, M.Rahman, and M. L. Norton, Appl. Phys. Lett., 102, 023701 (2013). https://doi.org/https://doi.org/10.1063/1.4775696

    Article  ADS  Google Scholar 

  10. T. Idehara, H.Tsuchiya, O.Watanabe, et al., Int. J. Infrared Millim. Waves, 27, No. 3, 319–331 (2006). https://doi.org/10.1007/s10762-006-9084-9

  11. M. Y. Glyavin, A. G. Luchinin, G.Y.Golubiatnikov, Phys. Rev. Lett., 100, No. 1, 015101 (2008). https://doi.org/https://doi.org/10.1103/PhysRevLett.100.015101

    Article  ADS  Google Scholar 

  12. V. L. Bratman, M.Yu.Glyavin, Yu. K. Kalynov, et al., J. Infrared Millim. Terahertz Waves, 32, No. 3, 371–379 (2011). https://doi.org/https://doi.org/10.1007/s10762-010-9689-x

    Article  Google Scholar 

  13. T. Idehara and S.P. Sabchevski, J. Infrared Millim. Terahertz Waves, 33, 667–694 (2012). https://doi.org/https://doi.org/10.1007/s10762-011-9862-x

    Article  Google Scholar 

  14. M. Y. Glyavin and G. G. Denisov, in: Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves, September 9–14, 2018, Nagoya, Japan, p. 8510123. https://doi.org/10.1109/IRMMW-THz.2018.8510123

  15. A. Fokin, M. Glyavin, G. Golubiatnikov, et al., Sci. Rep., 8, No. 1, 4317 (2018). https://doi.org/https://doi.org/10.1038/s41598-018-22772-1

    Article  ADS  Google Scholar 

  16. Tatematsu Y. EPJ Web Conf., 195, 01018 (2018). https://doi.org/https://doi.org/10.1051/epjconf/201819501018

    Article  Google Scholar 

  17. M. Thumm, J. Infrared Millim. Terahertz Waves, 41, 1–140 (2020). https://doi.org/https://doi.org/10.1007/s10762-019-00631-y

    Article  Google Scholar 

  18. M. K.Hornstein, V. S. Bajaj, R. G. Griffin, and R. J.Temkin, IEEE Trans. Plasma Sci., 34, No. 3, 524–533 (2006). https://doi.org/https://doi.org/10.1109/TPS.2006.875769

    Article  ADS  Google Scholar 

  19. V. L. Bratman, Y. K. Kalynov, and V.N.Manuilov, Phys. Rev. Lett., 102, No. 24, 245101 (2009). https://doi.org/https://doi.org/10.1103/PhysRevLett.102.245101

    Article  ADS  Google Scholar 

  20. I.V. Bandurkin, V. L. Bratman, Y. K. Kalynov, et al., IEEE Trans. Electron Devices, 65, 2287–2293 (2018). https://doi.org/https://doi.org/10.1109/TED.2018.2797311

    Article  ADS  Google Scholar 

  21. M. Blank, P. Borchard, S.Cauffman, and K. Felch, in: Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves, September 9–14, 2018, Nagoya, Japan, p. 8510010. https://doi.org/10.1109/IRMMW-THz.2018.8510010

  22. Yu.K.Kalynov, V.N.Manuilov, A.Sh.Fiks, and N.A.Zavolskiy, Appl. Phys. Lett., 114, 213502 (2019). https://doi.org/https://doi.org/10.1063/1.5094875

    Article  ADS  Google Scholar 

  23. M. K.Hornstein, V. S. Bajaj, R. G. Griffin, et al., IEEE Trans. Electron Dev., 52, 798–807 (2005). https://doi.org/https://doi.org/10.1109/TED.2005.845818

    Article  ADS  Google Scholar 

  24. T. H. Chang, T. Idehara, I. Ogawa, et al., J. Appl. Phys., 105, 063304 (2009). https://doi.org/https://doi.org/10.1063/1.3097334

    Article  ADS  Google Scholar 

  25. A. C.Torrezan, M. A. Shapiro, J.R. Sirigiri, et al., IEEE Trans. Electron Dev., 58, No. 8, 2777–2783 (2011). https://doi.org/https://doi.org/10.1109/TED.2011.2148721

    Article  ADS  Google Scholar 

  26. V. L. Bratman, A.V. Savilov, and T.H.Chang, Radiophys. Quantum Electron., 58, No. 9, 660–672 (2016). https://doi.org/https://doi.org/10.1007/s11141-016-9638-1

    Article  ADS  Google Scholar 

  27. V. L. Bratman, A.E. Fedotov, Y.K.Kalynov, et al., IEEE Trans. Electron Dev., 64, No. 12, 5147–5150 (2017). https://doi.org/10.1109/TED.2017.2766281

  28. A. E. Fedotov, R. M.Rozental, I. V. Zotova, et al., J. Infrared Millim. Terahertz Waves, 39, No. 10, 975–983 (2018). https://doi.org/https://doi.org/10.1007/s10762-018-0522-2

    Article  Google Scholar 

  29. Y. K. Kalynov, I.V. Osharin, and A.V. Savilov, IEEE Trans. Electron Dev., 64, No. 11, 4693–4699 (2017). https://doi.org/https://doi.org/10.1109/TED.2017.2751098

    Article  ADS  Google Scholar 

  30. W. He, K.Ronald, A.R.Young, et al., IEEE Trans. Electron Dev., 52, No. 5, 839–844 (2005). https://doi.org/10.1109/TED.2005.845858

  31. V. L. Bratman, G. G. Denisov, S.V. Samsonov, et al., Radiophys. Quantum Electron., 50, No. 2, 95–107 (2007). https://doi.org/https://doi.org/10.1007/s11141-007-0009-9

    Article  ADS  Google Scholar 

  32. S. V. Samsonov, G.G.Denisov, A.A.Bogdashov, and I.G.Gachev, IEEE Trans. Electron Dev., 68, No. 11, 5846–5850 (2021). https://doi.org/https://doi.org/10.1109/TED.2021.3114141

    Article  ADS  Google Scholar 

  33. E. M. Novak, S. V. Samsonov, A.V. Savilov, IEEE Trans. Electron Dev., 69, No. 9, 5199–5205 (2022). https://doi.org/https://doi.org/10.1109/TED.2022.3188604

    Article  ADS  Google Scholar 

  34. E. M. Novak, S. V. Samsonov, and A. V. Savilov, Phys. Plasmas, 30, No. 4, Art. no. 043101 (2023). https://doi.org/10.1063/5.0140591

  35. I. I. Antakov, S.P. Belov, and L. I.Gershtein, JETP Lett., 19, No. 10, 329–330 (1974).

    ADS  Google Scholar 

  36. G. F. Brand, N. G. Douglas, M. Gross, et al., Int. J. Infrared Millim. Waves, 3, 725–734 (1982). https://doi.org/https://doi.org/10.1007/BF01009730

    Article  ADS  Google Scholar 

  37. O.Dumbrajs and A.Möbius, Int. J. Electron., 84, No. 4, 411–419 (1998). https://doi.org/https://doi.org/10.1080/002072198134751

    Article  Google Scholar 

  38. M.Yu.Glyavin, A.G. Luchinin, M.V. Morozkin, and V. I. Khizhnyak, Radiophys. Quantum Electron., 51, No. 1, 57–63 (2008). https://doi.org/https://doi.org/10.1007/s11141-008-9006-x

    Article  ADS  Google Scholar 

  39. M.A.Khozin, G.G.Denisov, S.V.Kuzikov, and A.B.Pavelyev, Radiophys. Quantum Electron., 53, No. 2, 111–121 (2010). https://doi.org/https://doi.org/10.1007/s11141-010-9207-y

    Article  ADS  Google Scholar 

  40. V. L. Bratman, Y. K. Kalynov, G. I. Kalynova, et al., IEEE Trans. Electron Dev., 61, No. 10, 3529–3533 (2014). https://doi.org/https://doi.org/10.1109/TED.2014.2350084

    Article  ADS  Google Scholar 

  41. G. S.Nusinovich, Phys. Plasmas, 26, No. 5, 053107 (2019). https://doi.org/https://doi.org/10.1063/1.5099909

    Article  ADS  Google Scholar 

  42. X. Guan, J. Zhang, W. Fu, et al., Electronics, 10, No. 5, 526 (2021). https://doi.org/https://doi.org/10.3390/electronics10050526

    Article  Google Scholar 

  43. I.V. Bandurkin, Yu.K.Kalynov, I.V.Osharin, et al., Radiophys. Quantum Electron., 65, Nos. 5–6, 358–370 (2022). https://doi.org/10.1007/s11141-023-10219-1

  44. A. Savilov and D. Shchegolkov, Photonics, 10, No. 1, 36 (2023). https://doi.org/https://doi.org/10.3390/photonics10010036

    Article  Google Scholar 

  45. V. L. Bratman, S. L. Novozhilov, and M. I.Petelin, Élektron. Tekh. Ser. Élektron. SVCh, No. 11, 46–49 (1976).

  46. S. V.Kolosov, V. E. Zapevalov, and I.E. Zaitseva, Ves. Nats. Akad. Navuk Belarusi, Ser. Fiz.-Tekh. Navuk, 63, No. 3, 358–367 (2018). https://doi.org/10.29235/1561-8358-2018-63-3-358-367

  47. Yu.M.Guznov, Y. K. Kalynov, I.V. Osharin, and A.V. Savilov, IEEE Trans. Electron Dev., 69, No. 1, 325–332 (2022). https://doi.org/https://doi.org/10.1109/TED.2021.3129725

    Article  ADS  Google Scholar 

  48. E. Semenov, V. Zapevalov, A. Zuev, Commun. Comput. Inf. Sci., 1413, 49–62 (2021). https://doi.org/https://doi.org/10.1007/978-3-030-78759-2_4

    Article  Google Scholar 

  49. E. S. Semenov, A. S. Zuev, and A.P. Fokin, Inf. Mat. Tekhnol. Nauke Upr., No. 1(25), 35–47 (2022). https://doi.org/10.38028/esi.2022.25.1.003

  50. E. S. Semenov, M. D. Proyavin, M.V.Morozkin, et al., Radiophys. Quantum Electron., 66, Nos. 7–8 ???–???(2023).

  51. A.S.Zuev, A. S. Sedov, E. S. Semenov, et al., IEEE Trans. Plasma Sci., 48, No. 11, 4037–4040 (2020). https://doi.org/https://doi.org/10.1109/TPS.2020.3025689

    Article  ADS  Google Scholar 

  52. Yu.K.Kalynov, A.V. Savilov, and E. S. Semenov, Phys. Plasmas, 28, 113105 (2021). https://doi.org/https://doi.org/10.1063/5.0071351

    Article  ADS  Google Scholar 

  53. I.V. Bandurkin, Y. K. Kalynov, I.V. Osharin, et al., IEEE Trans. Electron Dev., 70, No. 4, 1936–1941 (2023). https://doi.org/https://doi.org/10.1109/TED.2023.3245996

    Article  ADS  Google Scholar 

  54. G. S.Nusinovich, Introduction to the Physics of Gyrotrons, Johns Hopkins Univ. Press, Baltimore (2004).

    Book  Google Scholar 

  55. M.Yu.Glyavin, G.G.Denisov, M. L.Kulygin, and Yu.V.Novozhilova, Tech. Phys. Lett., 41, No. 7, 628–631 (2015). https://doi.org/https://doi.org/10.1134/S106378501507007X

    Article  ADS  Google Scholar 

  56. Yu.V.Novozhilova, G.G.Denisov, M.Yu.Glyavin, et al., Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 25, No. 1, 4–34 (2017). https://doi.org/10.18500/0869-6632-2017-25-1-5-34

  57. A.P. Fokin, A. S. Sedov, and A. S. Zuev, Rev. Sci. Instrum., 91, No. 2, 024706 (2020). https://doi.org/https://doi.org/10.1063/1.5140720

    Article  ADS  Google Scholar 

  58. L.Ya.Bogomolov, N. S.Ginzburg, and A. S. Sergeev, Radiotekh. Élektron., 31, No. 1, 102–107 (1986).

  59. V. L. Bratman and A. V. Savilov, Nucl. Instrum. Methods Phys. Res. A, 358, 182–185 (1995). https://doi.org/https://doi.org/10.1016/0168-9002(94)01409-4

    Article  ADS  Google Scholar 

  60. V. L. Bratman, G. G. Denisov, A. V. Savilov, et al., Nucl. Instrum. Methods Phys. Res. A, 407, 40–44 (1998). https://doi.org/https://doi.org/10.1016/S0168-9002(97)01364-8

    Article  ADS  Google Scholar 

  61. N. S. Ginzburg, A. M. Malkin, N.Yu.Peskov, et al., Appl. Phys. Lett., 95, No. 4, 043504 (2009). https://doi.org/10.1063/1.3184592

  62. A.V.Arzhannikov, N. S. Ginzburg, V.Yu. Zaslavskii, et al., Tech. Phys. Lett., 38, No. 7, 600–603 (2012). https://doi.org/https://doi.org/10.1134/S1063785012070024

    Article  ADS  Google Scholar 

  63. M.D. Proyavin, A.A.Vikharev, A. E. Fedotov, Radiophys. Quantum Electron., 63, Nos. 5–6, 469–478 (2020). https://doi.org/https://doi.org/10.1007/s11141-021-10072-0

    Article  ADS  Google Scholar 

  64. M. D. Proyavin, M.V.Morozkin, N. S. Ginzburg, et al., Instruments, 6, No. 4, 81 (2022). https://doi.org/https://doi.org/10.3390/instruments6040081

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savilov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 7–8, pp. 621–636, July–August 2023. Russian https://doi.org/10.52452/00213462_2023_66_07_621

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandurkin, I.V., Bylinsky, N.A., Zaslavsky, V.Y. et al. Frequency-Tunable Gyrotron with External Reflections. Radiophys Quantum El (2024). https://doi.org/10.1007/s11141-024-10316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11141-024-10316-9

Navigation