Skip to main content
Log in

Potentialities of Small-Size Subterahertz-Wave Spectrometers Based on Cascade Frequency Multiplication for Local Environmental Monitoring of the Atmosphere

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We discuss various approaches to designing a small-size subterahertz-wave spectrometer based on the effect of cascade frequency multiplication, which can be used for local environmental monitoring of the atmosphere under field conditions. The results of estimating the limit of detection by the absorption coefficient are presented along with information about the optimal ranges and limits of detection based on the concentration of several molecular components, which are of interest for environmental monitoring of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Carpenter and P. D. Nightingale, Chem. Rev., 115, No. 10, 4015–4034 (2015). https://doi.org/https://doi.org/10.1021/cr5007123

    Article  Google Scholar 

  2. G. A. Novak and T. H. Bertram, Acc. Chem. Res., 53, No. 5, 1014–1023 (2020). https://doi.org/https://doi.org/10.1021/acs.accounts.0c00095

    Article  Google Scholar 

  3. T. Friborg, H. Soegaard, T.R. Christensen, et al., Geophys. Res. Lett., 30, No. 21, 2129–2133 (2003). https://doi.org/https://doi.org/10.1029/2003GL017797

    Article  ADS  Google Scholar 

  4. G. L.Vourlitis and W.C.Oechel, in: W.C. Oechel, G. L. Vourlitis, T.V. Callaghan, et al., Eds., Global Change and Arctic Terrestrial Ecosystems, Springer, New York (1997), pp. 266–289. https://doi.org/10.1007/978-1-4612-2240-8_15

  5. M. J. Carmichael, E. S.Bernhardt, S. L. Brauer, and W. K. Smith, Biogeochemistry, 119, Nos. 1–3, 1–24 (2014). https://doi.org/https://doi.org/10.1007/s10533-014-9974-1

    Article  Google Scholar 

  6. M.R.Turetsky, A.Kotowaska, J.Bubier, et al., Glob. Chang. Biol., 20, No. 7, 2183–2197 (2014). https://doi.org/https://doi.org/10.1111/gcb.12580

    Article  ADS  Google Scholar 

  7. T.V.Glukhova, D.V. Ilyasov, S. E.Vompersky, et al., Forests, 12, No. 3, 496–517 (2021). https://doi.org/10.3390/f12040496

  8. S. Schlemmer, in: J. Laane, Ed., Frontiers and Advances in Molecular Spectroscopy, Elsevier, Cambridge (2018), pp. 471–525. https://doi.org/10.1016/B978-0-12-811220-5.00016-2

  9. V. L.Vaks, E.G.Domracheva, E.A. Sobakinskaya, and M. B. Chernyaeva, Phys. Usp., 57, 684–701 (2014). https://doi.org/https://doi.org/10.3367/UFNe.0184.201407d.0739

    Article  ADS  Google Scholar 

  10. V. L.Vaks, V.A.Anfertev, V.Yu.Balakirev, et al., Phys. Usp., 63, 708–720 (2020). https://doi.org/10.3367/UFNe.2019.07.038613

  11. M. B. Agranat, I. V. Il’ina, and D. S. Sitnikov, High Temp., 55, No. 6, 922–934 (2017). https://doi.org/10.1134/S0018151X17060013

  12. V. L.Vaks, E.G.Domracheva, A. A. Lastovkin, et al., Vestnik Nizhegorodskogo Universiteta, 6, No. 1, 81–87 (2013).

    Google Scholar 

  13. I.V. Minin and O.V. Minin, Vestnik Siberian State Univ. Geosystems Technologies [in Russian], 26, No. 4, 160–175 (2021). https://doi.org/10.33764/2411-1759-2021-26-4-160-175

  14. W. L. Bishop, K.McKinney, R. J. Mattauch, et al., IEEE MTT-S Int. Symp., June 9–11, 1987, Las Vegas, USA, pp. 607–610.

  15. R. M.Weikle, T.W.Crowe, and E. L.Kollberg, Int. J. High Speed Elect. and Systems, 13, No. 2, 429–456 (2003). https://doi.org/10.1142/s012915640300179x

  16. A. Maestrini, B.Thomas, H.Wang, et al., Comptes Rendus Physique, 11, Nos. 7–8, 480–495 (2010). https://doi.org/10.1016/j.crhy.2010.05.002

  17. B. Orfao, B. G.Vasallo, D.Moro-Melgar, S.Perez, et al., IEEE Trans. Electron Devices, 67, No. 9, 3530–3535 (2020). https://doi.org/10.1109/TED.2020.3007374

  18. Y. Zhang, C.Wu, X. Liu, et al., Remote Sens., 14, No. 10, 2486 (2022). https://doi.org/https://doi.org/10.3390/rs14102486

  19. H.Wang, L. Samoska, T.Gaier, et al., IEEE Trans. Microw. Theory Tech., 49, No. 1, 9–16 (2001). https://doi.org/10.1109/22.899956

  20. J. S.Ward, G.Chattopadhyay, J. Gill, et al., 33 Int. Conf. Infrared, Millimeter and Terahertz Waves, Sept. 15–19, 2008, Pasadena, USA, p. 1–3. https://doi.org/10.1109/ICIMW.2008.4665437

  21. https://www.vadiodes.com/en/frequency-multipliers

  22. E. L.Kollberg and A.Rydberg, Electronics Lett., 25, 1696–1698 (1989). https://doi.org/https://doi.org/10.1049/el:19891134

    Article  ADS  Google Scholar 

  23. Q. Xiao, J. L. Hesler, T.W.Crowe, et al., IEEE MTT-S Int. Microwave Symposium Digest, June 17, 2005, Long Beach, USA, pp. 443–446. https://doi.org/10.1109/MWSYM.2005.1517209

  24. J. Stake, T. Bryllert, J.Vukusic, and A.O.Olsen, Proc. SPIE, 6739, 67390–67398 (2007). https://doi.org/https://doi.org/10.1117/12.737592

    Article  ADS  Google Scholar 

  25. S. Winnerl, E. Schomburg, J. Grenzer, et al., Phys. Rev. B, 56, No. 16, 10303–10307 (1997). https://doi.org/https://doi.org/10.1103/PhysRevB.56.10303

    Article  ADS  Google Scholar 

  26. N. Khiabani, Y.Huang, L.E.Garcia-Munoz, et al., IEEE Trans. Terahertz Sci. Technol., 4, No. 4, 501–508 (2014). https://doi.org/10.1109/TTHZ.2014.232082

  27. W. Feng, S.Wei, Y. Zheng, et al., Nanomaterials, 12, No. 7, 1114 (2022). https://doi.org/https://doi.org/10.3390/nano12071114

    Article  Google Scholar 

  28. V. L.Vaks, S. I.Pripolsin, A.N.Panin, et al., 33rd Intern. Conf. Infrared, Millim. Terahertz Waves, Sept. 15-19, 2008, Pasadena, USA, 4665838. https://doi.org/10.1109/ICIMW.2008.4665838

  29. N. V.Kinev and V.P.Koshelets, J. Comm. Technol. Electron., 66, No. 3, 278–288 (2021). https://doi.org/https://doi.org/10.1134/S1064226921030116

    Article  Google Scholar 

  30. F. E. Sizov, Semicond. Sci. Technol., 33, No. 12, 123001 (2018). https://doi.org/10.1088/1361-6641/aae473

  31. Y. Kawaguchi, K. Hirakawa, M. Saeki, et al., Appl. Phys. Lett., 80, No. 1, 136–139 (2002). https://doi.org/https://doi.org/10.1063/1.1430854

    Article  ADS  Google Scholar 

  32. V.Ryzhii, Semicond. Sci. Technol., 11, No. 5, 759–765 (1996). https://doi.org/https://doi.org/10.1088/0268-1242/11/5/018

    Article  ADS  Google Scholar 

  33. V. N. Murzin and Yu. A. Mityagin, Phys. Usp., 42, 396–399 (1999). https://doi.org/https://doi.org/10.1070/PU1999v042n04ABEH000459

    Article  ADS  Google Scholar 

  34. W. Wild, in: M. C. E. Huber, Ed., Observing Photons in Space: A Guide to Experimental Space Astronomy, Springer, New York (2013), pp. 543–564. https://doi.org/10.1007/978-1-4614-7804-1_31

  35. N. V. Kinev, L. V. Filippenko, K. V. Kalashnikov et al., 3rd Int. School Conf. Optoelectronics, Photonics, Engineering and Nanostructures, March 28–30, 2016, St. Petersburg, Russia, pp. 012169-012173. https://doi.org/10.1088/1742-6596/741/1/012169

  36. V.Koshelets, K.Rudakov, A.Khudchenko, et al., Brief Reports in Physics, Phys. Inst. Acad. Sci., 48, No. 9, 47–55 (2021).

  37. S. Claude, P.Niranjanan, F. Jiang, et al., J. Infrared Millim. Terahertz Waves, 35, 563–582 (2014). https://doi.org/https://doi.org/10.1007/s10762-014-0071-2

    Article  Google Scholar 

  38. L.P.Kouwenhoven, S. Jauhar, K. McCormick, et al., Phys. Rev. B Rapid Comm., 50, 2019–2021 (1994). https://doi.org/https://doi.org/10.1103/PhysRevB.50.2019

    Article  ADS  Google Scholar 

  39. L.P.Kouwenhoven, S. Jauhar, J. Orenstein, and P. L.McEuen, Phys. Rev. Lett., 73, 3443–3446 (1994). https://doi.org/https://doi.org/10.1103/PhysRevLett.73.3443

    Article  ADS  Google Scholar 

  40. H. Hasegawa and S.Kasai, Proc. SPIE, 4999, 96–105 (2003). https://doi.org/https://doi.org/10.1117/12.479611

    Article  ADS  Google Scholar 

  41. Y. Kawano, T. Fuse, S.Toyokawa, et al., J. Appl. Phys., 103, No. 3, 034307 (2008). https://doi.org/10.1063/1.2838237

  42. L. Jiang, S. Shiba, K. Shimbo, M. Sugimura, et al., 19th Int. Symp. Space Terahertz Technology, April 28–30, 2008, Groningen, Netherlands, pp. 54–57.

  43. J. J. A. Baselmans, M. Hajenius, J.R.Gao, et al., Appl. Phys. Lett., 84, No. 11, 1958–1960 (2004). https://doi.org/10.1063/1.1667012

  44. P. Khosropanah, J.R. Gao, W. M. Laauwen, et al., Appl. Phys. Lett., 91, No. 22, 221111 (2007). https://doi.org/10.1063/1.2819534

  45. U. U. Graf, C.E.Honingh, K. Jacobs, et al., J. Infrared Millim. Terahertz Waves, 36, 896–921 (2015). https://doi.org/https://doi.org/10.1007/s10762-015-0171-7

    Article  Google Scholar 

  46. D. S.Ponomarev, D.V. Lavrukhin, and A.E.Yachmenev, J. Phys. D. Appl. Phys., 51, No. 13, 135101 (2018). https://doi.org/10.1088/1361-6463/aab11d

  47. B. S. Karasik, A.V. Sergeev, and D. E. Prober, IEEE Trans. Terahertz Sci. Technol., 1, No. 1, 97–111 (2011). https://doi.org/https://doi.org/10.1109/TTHZ.2011.2159560

    Article  ADS  Google Scholar 

  48. I.V. Minin, O.V. Minin, J. S. Sanchez, et al., Optics Lett., 46, No. 13, 3061–3064 (2021). https://doi.org/https://doi.org/10.1364/OL.431175

    Article  ADS  Google Scholar 

  49. Y. M. Meziani, G. E. Garcia, J.E.V.Perez, et al., Solid-State Electron., 83, 113–117 (2013). https://doi.org/10.1016/j.sse.2013.01.030

  50. S.R. Kasjoo, M.B.Mokhar, N. F. Zakaria, and N. J. Juhari, 2nd Int. Conf. Applied Photonic and Electronics 2019 (InCAPE 2019), August 22, 2019, Putrajaya, Malaysia, Vol. 2203, No. 1, 020020. https://doi.org/10.1063/1.5142112

  51. A.Halpin, W.Cui, A.W. S.Kearn, et al., Phys. Rev. Appl., 12, No. 3, 031003 (2019). https://doi.org/10.1103/PhysRevApplied.12.031003

  52. Y.Takida, S. Suzuki, M. Asada, and H.Minamide, Appl Phys. Lett., 117, No. 2, 021107 (2020). https://doi.org/10.1063/5.0012318

  53. D. Loudkov, C.-Y. E.Tong, R.Blundell, et al., IEEE Trans. Appl. Superconductivity, 15, No. 2, 476–479 (2005). https://doi.org/10.1109/TASC.2005.849881

  54. V. V. Tkachenko, N. S. Izhko, and M. I.Ugrin, Tekhn. Pribory SVCh, 1, 50–51 (2008).

    Google Scholar 

  55. S.P. Han, H.Ko, J.W.Park, et al., Opt. Express, 21, No. 22, 25874-25882 (2013). https://doi.org/10.1364/OE.21.025874

  56. https://www.vadiodes.com/en/products-6/detectors

  57. https://www.tek.com/en/products/keithley/low-level-sensitive-and-specialty-instruments/nanovoltmeter-model-2182a

  58. N. Beev, IEEE I2MTC, May 14–17, 2018, Houston, USA, pp. 1–6. doi: https://doi.org/10.1109/I2MTC.2018.8409543

  59. F.Hindle, A. Cuisset, R. Bocquet, G. Mouret, Comptes Rendus Physique, 9, No. 2, 262–275 (2008). https://doi.org/https://doi.org/10.1016/j.crhy.2007.07.009

    Article  ADS  Google Scholar 

  60. Yu.V.Kistenev, A.Cuisset, O.A.Romanovskii, and A.V. Zherdeva, Atmos. Oceanic Optics, 35, No.S1, S17–S29 (2022). https://doi.org/https://doi.org/10.1134/S1024856023010074

    Article  ADS  Google Scholar 

  61. A. Jabri, V.Van, H. V. L. Nguyen, et al., Astron. Astrophys., 589, A127 (2016). https://doi.org/https://doi.org/10.1051/0004-6361/201628074

    Article  Google Scholar 

  62. A. Cuisset, M. A. M. Drumel, F.Hindle, et al., Chem. Phys. Lett., 586, 10–15 (2013). https://doi.org/10.1016/j.cplett.2013.09.029

  63. J. H. Carpenter, P. J. Seo, and D.H.Whiffen, J. Mol. Spectrosc., 170, No. 1, 215–227 (1995). https://doi.org/https://doi.org/10.1006/jmsp.1995.1066

    Article  ADS  Google Scholar 

  64. M.Ramos, and B. J.Drouin, J. Mol. Spectrosc., 269, No. 2, 187–192 (2011). https://doi.org/https://doi.org/10.1016/j.jms.2011.07.001

    Article  ADS  Google Scholar 

  65. R. D.Wellington and M.C. L.Gerry, J. Mol. Spectrosc., 109, No. 2, 269–282 (1985). https://doi.org/https://doi.org/10.1016/0022-2852(85)90313-3

    Article  Google Scholar 

  66. Z. Kisiel, A.Kraśnicki, L.Pszczołkowski, et al., J. Mol. Spectrosc., 257, No. 2, 177–186 (2009). https://doi.org/10.1016/j.jms.2009.08.006

  67. G. Wlodarczak, D. Boucher, R. Bocquet, J. Demaison, J. Mol. Spectrosc., 124, No. 1, 53–65 (1987). https://doi.org/https://doi.org/10.1016/0022-2852(87)90120-2

    Article  ADS  Google Scholar 

  68. Z. Kisiel, L.Pszczołkowski, W. Caminati, and P. G. Favero, J. Chem. Phys., 105, No. 5, 1778–1785 (1996). https://doi.org/https://doi.org/10.1063/1.472053

    Article  ADS  Google Scholar 

  69. L. Jingsong, C.Weidong, and Y. Benli, Appl. Spectr. Reviews, 46, No. 6, 440–471 (2011). https://doi.org/https://doi.org/10.1080/05704928.2011.570835

    Article  Google Scholar 

  70. D.R. Lide Jr. and M. Jen, J. Chem. Phys., 40, No. 1, 252–253 (1964). https://doi.org/https://doi.org/10.1063/1.1724886

    Article  ADS  Google Scholar 

  71. M. Simeckova, D. Jacquemart, L. S.Rothman, et al., J. Quant. Spectrosc. Radiat. Transfer., 98, No. 1, 130–155 (2006). https://doi.org/10.1016/j.jqsrt.2005.07.00

  72. G. Mouret, M.Guine, and A. Cuisset, IEEE Sensors J., 13, No. 1, 133–138 (2013). https://doi.org/https://doi.org/10.1109/JSEN.2012.2227055

    Article  ADS  Google Scholar 

  73. L. Consolino, S. Bartalini, and P. de Natale, J. Infrared Millim. Terahertz Waves, 38, No. 11, 1289–1315 (2017). https://doi.org/https://doi.org/10.1007/s10762-017-0406-x

    Article  Google Scholar 

  74. D. S. Sitnikov, S.A.Romashevskiy, A. A. Pronkin, and I.V. Ilina, J. Phys.: Conf. Ser., 1147, 012061 (2019). https://doi.org/10.1088/1742-6596/1147/1/012061

  75. P. Kilcullen, I. D.Hartley, E.T. Jensen, and M.Reid, J. Infrared Millim. Terahertz Waves, 36, No. 4, 380–389 (2015). https://doi.org/https://doi.org/10.1007/s10762-014-0139-z

    Article  Google Scholar 

  76. A. Cuisset, F.Hindle, G. Mouret, et al., Appl. Science, 11, No. 3, 1229 (2021). https://doi.org/https://doi.org/10.3390/app11031229

    Article  Google Scholar 

  77. F.Hindle, R. Bocquet, A. Cuisset, G. Mouret, et al., Optica, 6, No. 12, 1449–1454 (2019). https://doi.org/https://doi.org/10.1364/OPTICA.6.001449

    Article  ADS  Google Scholar 

  78. Y. V. Kistenev, A.V. Borisov, D.A. Vrazhnov, Eds., Medical Applications of Laser Molecular Imaging and Machine Learning, Bellingham, SPIE (2021).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kistenev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 10, pp. 820–834, October 2022. Russian https://doi.org/10.52452/00213462_2022_65_10_820

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kistenev, Y.V., Cuisset, A., Hindl, F. et al. Potentialities of Small-Size Subterahertz-Wave Spectrometers Based on Cascade Frequency Multiplication for Local Environmental Monitoring of the Atmosphere. Radiophys Quantum El 65, 746–759 (2023). https://doi.org/10.1007/s11141-023-10254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10254-y

Navigation