Skip to main content

Advertisement

Log in

Optical-Acoustic Detectors of IR and THz Radiation with Nano-Electro-Mechanical Elements Based on Single-Layer Graphene

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

An analytical review of optical-acoustic detectors (OADs) based on Golay cells for use in the infrared (IR) and THz radiation ranges is given. The history of the discovery and development of the OAD from the first works of Bell, Hayes and Goley and up to the present time is presented. The advantages of the OAD are noted; they consist in constant and high sensitivity in a wide range of the spectrum and the highest detection ability among thermal detectors. The main characteristics of the membranes, the main elements of the OAD, are considered and the physical properties of graphene, the most preferred material for membranes, are analyzed. Three OAD design groups are proposed: single cells with optical information reading and a capacitor-based microphone, selective detectors with gas-filled chambers, and matrix detectors. Estimates are given showing that the use of SLG-graphene membranes makes it possible to create IR and THZ radiation detectors with cells on the order of tens of microns in size and extremely high sensitivity. A new design scheme of matrix THz optical-acoustic detectors with the use of membranes made of hexatrigraphene (C)\({}_{63(6)}\) with record-breaking characteristics is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. A. G. Bell, ‘‘On the production and reproduction of sound by light,’’ Am. J. Sci. s3-20 (118), 305–324 (1880). https://doi.org/10.2475/ajs.s3-20.118.305

  2. J. Tyndall, ‘‘III. Action of an intermittent beam of radiant heat upon gaseous matter,’’ Proc. R. Soc. London 31, 307–317 (1881). https://doi.org/10.1098/rspl.1880.0037

    Article  Google Scholar 

  3. W. C. Roentgen, ‘‘On tones produced by the intermittent irradiation of a gas,’’ Phil. Mag. Ser. 5 11, 308–311 (1881). https://doi.org/10.1080/14786448108627021

    Article  Google Scholar 

  4. F. Rozenberg, History of Physics. Part 2: History of Physics in Modern History (Gos. Tekh.-Teor. Izd., Moscow, 1933).

    Google Scholar 

  5. Optical and Infrared Detectors, Ed. by R. J. Keyes (Springer-Verlag, Berlin, 1977).

    Google Scholar 

  6. P. I. Bresler, ‘‘Elements of theory and calculation of optical-acoustic gas analyzers based on some laws of infrared radiation absorption by gases,’’ in Automatic Gas Analyzers (TsINTI Electroprom, Moscow, 1961), pp. 210–224

  7. N. A. Pankratov, ‘‘On relation between specific and threshold camera sensitivity of nonselective optomechanical detector and its time constant,’’ Opt.-Mech. Prom., No. 2, 16–19 (1957).

  8. L. E. Andreeva, Elastic Elements of Devices (Mashinostroenie, Moscow, 1981).

    Google Scholar 

  9. H. V. Hayes, ‘‘A new receiver of radiant energy,’’ Rev. Sci. Instrum. 7, 202–204 (1936). https://doi.org/10.1063/1.1752121

    Article  ADS  Google Scholar 

  10. N. A. Pankratov and L. M. Vinogradova, ‘‘Selective optoacoustic radiation detectors with optical, electrodynamic, and capacitance microphone,’’ in Automatic Gas Analyzers (TsINTI Electroprom, Moscow, 1961), pp. 234–248.

  11. J. Scholl, I. Marfan, M. Munsch, and P. Combette, Detectors of Infrared Radiation (Mir, Moscow, 1969).

  12. R. A. Brazhe, A. I. Kochaev, and R. M. Meftakhutdinov, Graphenes and Their Physical Properties (UlGTU, Ulyanovsk, 2016).

  13. C. Lee, X. Wei, Q. Li, R. Carpick, J. W. Kysar, and J. Hone, ‘‘Elastic and frictional properties of grapheme,’’ Phys. Status Solidi B 246, 2562–2567 (2009). https://doi.org/10.1002/pssb.200982329

    Article  ADS  Google Scholar 

  14. R. A. Brazhe, A. I. Kochaev, and R. M. Meftakhutdinov, ‘‘Acoustic and optical properties of graphenes,’’ Inzh. Tekhnol. 1, No. 1, 1–23 (2016).

    Google Scholar 

  15. I. S. Gibin and P. E. Kotlyar, ‘‘Membranes of optical-acoustic radiation receivers,’’ Appl. Phys., No. 2, 90–97 (2020).

  16. E. Ledwosinska, T. Szkopek, A. Guermoune, and M. Siaj, ‘‘Application of graphene membrane in micro-Golay cell array,’’ Proc. SPIE 8261, 82610A (2012) https://doi.org/10.1117/12.914054

    Article  ADS  Google Scholar 

  17. E. Ledwosinska, A. Guermoune, M. Siaj, and T. Szkopek, ‘‘Fabrication and characterization of suspended graphene membranes for miniature Golay cells,’’ Proc. SPIE 8624, 86240U (2013). https://doi.org/10.1117/12.2008974

    Article  ADS  Google Scholar 

  18. M. Lazzarino, A. Matruglio, G. Cautero, et al., ‘‘Graphene-based Golay THz arrayed detectors: Poster presentation,’’ in Proc. ATTRACT TWD Symposium: Trends, Wishes and Dreams in Detection and Imaging Technologies (Barcelona, Spain, 2016).

  19. A. Rogalski, ‘‘Graphene-based materials in the infrared and terahertz detector families,’’ Adv. Opt. Photonics 11, 314–379 (2019). https://doi.org/10.1364/AOP.11.000314

    Article  ADS  Google Scholar 

  20. Golay Graphene Trace Matrices for Terahertz Color Sensitive Image Sensor (GRANT EU Horizon 2020 N 777222) (Istituto di Nanoscienze, Italy, 2020).

  21. A. V. Korlyakov, ‘‘Ultrathin membranes in microsystem technics,’’ Nano-Microsystems Technology, No. 8, 17–26 (2007).

    Google Scholar 

  22. I. S. Gibin and P. E. Kotlyar, ‘‘Teraherz radiation detectors (a review),’’ Adv. Appl. Phys. 6 (2), 117–129 (2018).

    Google Scholar 

  23. G. Kropotov and P. Kaufmann, ‘‘THz photometers for solar flare observations from space,’’ Photonics Russia, No. 5, 40–50 (2013).

    Google Scholar 

  24. M. L. Viengerov, ‘‘New method of gas analysis based on Tyndall–Roentgen opto-acoustic effect,’’ Dokl. Akad. Nauk SSSR 19, 687–688 (1938).

    Google Scholar 

  25. M. B. Agranat, I. V. Il’ina, and D. S. Sitnikov, ‘‘Application of terahertz spectroscopy for remote express analysis of gases,’’ High Temp. 55, 922–934 (2017). https://doi.org/10.1134/S0018151X17060013

    Article  Google Scholar 

  26. E. V. Stepanov, ‘‘Methods of high sensitive gas analysis of molecular biomarkers in studies of exhaled air,’’ Tr. IOFAN 61, 5–47 (2005).

    Google Scholar 

  27. I. S. Gibin and P. E. Kotlyar, ‘‘Matrix optical-electronic terahertz radiation receiver with nanooptoelectromechanical elements on the base of perforated SLG graphene,’’ Appl. Phys., No. 3, 76–82 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Gibin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibin, I.S., Kotlyar, P.E. Optical-Acoustic Detectors of IR and THz Radiation with Nano-Electro-Mechanical Elements Based on Single-Layer Graphene. Optoelectron.Instrument.Proc. 57, 51–59 (2021). https://doi.org/10.3103/S8756699021010052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021010052

Keywords:

Navigation