Skip to main content
Log in

New Designs of Laser Transitions in Terahertz Quantum–Cascade Lasers

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the band designs of terahertz quantum–cascade lasers (THz QCLs) with an active region of GaAs/AlxGa1−xAs quantum wells (QWs) by using the solution of the Schrödinger equation with allowance for dephasing of quantum states, as well as solving a system of closed balance equations. For two-QW designs with increased AlxGa1−xAs potential barrier height (x = 0.20, 0.25, and 0.30), temperature dependences of the peak gain are calculated. It is shown that by increasing the aluminum content in the barrier layers compared to the conventional x = 0.15, it becomes possible to increase the operating temperatures of THz QCLs by more than 220 K. Two new designs of laser transitions are proposed to increase the output power and operating temperature of THz QCLs. To increase the output power, a design with a two-photon scheme of laser transitions was proposed, which causes an approximately twofold slower drop in the nonlinear gain with increasing photon density. To increase operating temperatures, it is suggested to use weakly localized electron states with wave functions extending over two or more periods of the structure. The matrix element of dipole transitions in such structures is shown to be greatly increased, while the lower laser level has a larger energy gap with the injector, is less populated, and is more temperature stable compared to the conventional designs. In this case, the calculated value of the maximum operating temperature is about 250 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Kohler, A.Tredicucci, F.Beltram, et al., Nature, 417, 156–159 (2002). https://doi.org/10.1038/417156a

  2. A. Khalatpour, A. K. Paulsen, C. Deimert, et al., Nat. Photon., 15, 16–20 (2021). https://doi.org/10.1038/s41566-020-00707-5

    Article  ADS  Google Scholar 

  3. B.Wen and D. Ban, Prog. Quantum Electron., 80, 100363 (2021). https://doi.org/10.1016/j.pquantelec.2021.100363

  4. Y. J. Han, L. H. Li, J. Zhu, et al., Opt. Express., 26, No. 4, 3814–3827 (2018). https://doi.org/10.1364/OE.26.003814

    Article  ADS  Google Scholar 

  5. D. V. Ushakov, A. A. Afonenko, A.A.Dubinov, et al., Quantum Electron., 48, 1005–1005 (2018). https://doi.org/10.1070/QEL16806

  6. L. Consolino, M. Nafa, M.De Regis, et al., Commun. Phys., 3, No. 1, 69 (2020). https://doi.org/10.1038/s42005-020-0344-0

    Article  Google Scholar 

  7. Y. Irimajiri, I. Morohashi, and A.Kawakami, IEEE Trans. Terahertz Sci. Technol., 10, No. 5, 474–479 (2020). https://doi.org/10.1109/TTHZ.2020.2990358

    Article  ADS  Google Scholar 

  8. A. D.Raki´c, T.Taimre, K. Bertling, et al., Appl. Phys. Revs., 6, 021320 (2019). https://doi.org/10.1063/1.5094674

  9. R. A. Khabibullin, N.V. Shchavruk, A.N.Klochkov, et al., Semiconductors, 51, No. 4, 514–519 (2017). https://doi.org/10.1134/S106378261704008X

  10. L. Bosco, M. Francki´e, G. Scalari, et al., Appl. Phys. Lett., 115, 010601 (2019). https://doi.org/10.1063/1.5110305

  11. R. A. Khabibullin, N.V. Shchavruk, A.Yu.Pavlov, et al., Semiconductors, 50, No. 10, 1377–1382 (2016). https://doi.org/10.1134/S1063782616100134

  12. A.V. Ikonnikov, K.V. Marem’yanin, S.V. Morozov, et al., Tech. Phys. Lett., 43, 362–365 (2017). https://doi.org/10.1134/S1063785017040083

  13. R. A. Khabibullin, N.V. Shchavruk, D. S.Ponomaryov, et al., Semiconductors, 52, No. 11, 1380–1385 (2018). https://doi.org/10.1134/S1063782618110118

  14. G.E.Tsyrlin, R.R.Reznik, A. E. Zhukov, et al., Semiconductors, 54, No. 9, 1092–1095 (2020). https://doi.org/10.1134/S1063782620090298

    Article  ADS  Google Scholar 

  15. R. A. Khabibullin, K.V.Marem’yanin, D. S.Ponomaryov, et al., Semiconductors, 56, No. 2, 71–77 (2022). https://doi.org/10.1134/S1063782622010080

  16. T. A. Bagaev, M. A. Ladugin, A.A.Marmalyuk, et al., Tech. Phys. Lett., 48, No. 5, 45–47 (2022). https://doi.org/10.21883/TPL.2022.05.53479.19162

  17. D. V. Ushakov, A. A. Afonenko, A.A.Dubinov, et al., Quantum Electron., 49, No. 10, 913–918 (2019). https://doi.org/10.1070/QEL17068

  18. D. Ushakov, A. Afonenko, R.Khabibullin, et al., Opt. Express, 28, No. 17, 25371–25382 (2020). https://doi.org/10.1364/OE.398552

  19. C. Sirtori, P.Kruck, S.Barbieri, et al., Appl. Phys. Lett., 73, No. 24, 3486–3488 (1998). https://doi.org/10.1109/QELS.1999.807074

  20. I.Vurgaftman, J.R.Meyer, and L.R.Ram-Mohan, J. Appl. Phys., 89, No. 11, 5815–5875 (2001). https://doi.org/10.1063/1.1368156

    Article  ADS  Google Scholar 

  21. M. Franckié, D.O.Winge, J.Wolf, et al., Opt. Express, 23, N. 4, 5201–5212 (2015). https://doi.org/10.1364/OE.23.005201

    Article  ADS  Google Scholar 

  22. D.V.Ushakov and I. S. Manak, J. Applied Spectroscopy, 74, No. 6, 892–896 (2007). https://doi.org/10.1007/s10812-007-0138-0

    Article  ADS  Google Scholar 

  23. V. B. Gorfinkel, S. Luryi, and B. Gelmont, IEEE J. Quantum Electron., 32, No. 11, 1995–2003 (1996). https://doi.org/10.1109/3.541687

    Article  ADS  Google Scholar 

  24. R. Khabibullin, D.Ushakov, A.Afonenko, et al., Proc. SPIE, 11066, 1106613. https://doi.org/10.1117/12.2523284

  25. R. Khabibullin, D.Ushakov, A.Afonenko, et al., Proc. SPIE, 11022, 1102204. https://doi.org/10.1117/12.2521774

  26. B.Wen, C. Xu, S.Wang, et al., Opt. Express, 26, No. 7, 9194–9204 (2018). https://doi.org/10.1364/OE.26.009194

  27. A. N. Baranov, H. Nguyen-Van, Z. Loghmari, et al., AIP Advances, 9, 055214 (2019). https://doi.org/10.1063/1.5092855

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Khabibullin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 505–515, May–June 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_05_505

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, D.V., Afonenko, A.A., Ponomarev, D.S. et al. New Designs of Laser Transitions in Terahertz Quantum–Cascade Lasers. Radiophys Quantum El 65, 461–470 (2022). https://doi.org/10.1007/s11141-023-10228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10228-0

Navigation